首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 61 毫秒
1.
分离式螺旋热管蓄冰过程动态特性模拟   总被引:1,自引:1,他引:0  
在提出分离式螺旋热管蓄冷空调系统的基础上,建立了螺旋热管蒸发段蓄冰过程的理论模型,分析了单位时间内管外结冰厚度、管外冰层厚度、蓄冰率、单位时间蓄冷量以及系统总蓄冷量随时间的变化关系,并对三种不同管径的螺旋热管的蓄冰特性进行了分析研究,研究结果表明在螺旋热管曲率半径相同的条件下,增大管径可以提高系统的单位时间蓄冷量。  相似文献   

2.
在提出分离式螺旋热管蓄冷空调系统的基础上,建立了螺旋热管管外融冰放冷过程的理论模型;分析了蓄冷桶内融冰量及放冷量随时间的变化关系。研究结果表明,在蓄冷桶进口水温一定的情况下,外融冰的循环水流量越大,其融冰放冷过程就越快;在外融冰循环水流量一定的情况下,放冷过程随蓄冷桶进口水温的升高而加快。  相似文献   

3.
建立了分离式热管蒸发段充冷过程的数理模型,分析了在不同热管介质入口温度下热管蒸发段管外冰层厚度、热管介质出口温度、热管外蓄冷介质温度、单位时间蓄冷量以及总蓄冷量随时间的变化关系,研究结果表明,在热管蒸发段长度和管径一定的情况下,降低热管介质入口温度可以提高热管蒸发段单位时间蓄冷量、减小热管充冷时间。  相似文献   

4.
设计了基于微通道换热器的分离式热管空调系统,针对充液率、室内外温差以及冷凝器布置方式对空调性能的影响进行了试验研究。结果表明:高充液率和低充液率均会使分离式热管空调换热性能降低,系统最佳充液率为110%左右;室内外温差对分离式热管空调性能的影响显著,传热量随着温差的增大而增大,分离式热管空调传热量在20℃温差时比8℃温差时增加了348%;微通道冷凝器垂直布置时比平行布置时空调系统的充注量小,制冷量大。  相似文献   

5.
将新型平板热管作为换热元件引入相变蓄热系统,研制了一套新型的平板热管式相变蓄热换热器。蓄热换热器采用石蜡作为蓄热材料,对其蓄、放热过程进行了实验研究,得到了不同时刻换热器内石蜡温度分布。改变供、取热流体温度,分析了流体入口温度对换热器蓄放热过程的影响,分析了新型平板热管在蓄放热过程的均温性能以及换热器的蓄放热效率。结果表明,新型平板热管相变换热器蓄、放热效果良好。  相似文献   

6.
从技术角度研究和探讨了热管做为冰蓄冷装置的适用性,建立了单根热管蓄冰过程的数学模型,提出了蒸发段与冷凝段的长度配比;进行了一系列的实验,得到了不同工况下蓄冰厚度与时间之间的关系;结果表明热管蓄冰装置有着非常良好的蓄冰性能,为热管冰蓄冷装置的推广应用,提供整个装置的最优配置模式参数及强有力的理论依据及实验支撑。  相似文献   

7.
非相邻冷热源间强化传热新技术--热环的研究   总被引:9,自引:0,他引:9  
热环是泵或风机驱动的动力型分离式热管的简称,它为解决非相邻冷热源间的强化传热问题提供了一种较理想的解决办法。本文对热环的循环工质、驱动方式、性能系数进行了初步理论分析,并对气相驱动方案进行了验证性实验。最后,对热环与非分离式热管、重力型分离式热管、水回路方法在非相邻冷热源间热量传递中的应用特点进行了比较分析  相似文献   

8.
以R600A为工质的分离式热管的实验研究   总被引:1,自引:0,他引:1  
对分离式热管的整体热量传递特性进行了实验研究。以蛇形翅片管作为冷凝段和蒸发段进行热管实验,探讨了蒸发器进风面风温及分离式热管蒸发器与冷凝器之间高度差、工质充注量对分离式热管的影响。实验表明,随着蒸发器进风温度的升高,蒸发器与冷凝器换热系数都是呈现先增大后减小的趋势。在冷凝端进风温度恒定为16.55℃、蒸发端进风温度低于60℃时,以R600A为工质的分离式热管的传热量曲线近似于二次曲线,蒸发端进风温度高于60℃时,其传热量曲线近似于一条直线。加大充液率及增加蒸发器与冷凝器的高度差,分离式热管的传热能力均会得到提高。  相似文献   

9.
从技术角度研究和探讨了热管做为冰蓄冷装置的适用性;对各种热管用金属管材与工质的特性进行了科学比较;从而最终确定了适宜冰蓄冷工作的热管管材、热管工质及其基本尺寸;为热管冰蓄冷装置的深入研究及推广应用,提供了强有力的理论依据。  相似文献   

10.
蓄冷球堆积床动态充冷性能模拟   总被引:1,自引:0,他引:1  
根据蓄冷球和载冷剂之间的能量平衡,建立了蓄冷球堆积床充冷过程的数理模型。该模型考虑了载冷剂与蓄冷球之间的换热系数变化、载冷剂的导热、相变蓄冷材料的过冷度以及蓄冷球堆积床热损失的影响。采用数值计算方法模拟了蓄冷球堆积床的充冷过程,讨论了载冷剂入口温度、初始温度和流速对充冷过程蓄冷材料温度、载冷剂温度和蓄冰率的影响。  相似文献   

11.
An experimental energy storage system has been designed using a new type flat micro heat pipe heat exchanger that incorporates a moderate-temperature phase change material paraffin with a melting point of 58°C. The basic structure, working principles, and design concept are discussed. The heat transfer process during the charging and discharging of the heat exchanger under various operating conditions has been experimentally investigated. Results show that the performance of the new type flat micro heat pipe was steady and efficient during charging and discharging. The average thermal storage power and absorption efficiency have been determined to be approximately 537 W and 92.5%, respectively.  相似文献   

12.
热管管排组合对露点腐蚀温度影响研究   总被引:1,自引:0,他引:1  
比较了间壁式传热和分离式热管传热对热侧面积相等的情况下在低温烟气中的的传热,并在同样总面积比的情况下,做多种热管管排组合,通过管排组合改变热管换热器局部的温度分布,总结有利于避免露点腐蚀发生的管排组合规律。  相似文献   

13.
康奥峰  张鹏 《低温与超导》2012,40(3):1-7,35
在内径为2mm曲率为0.057的螺旋管内进行了超临界氮的对流换热实验,研究探讨了螺旋管入口温度、壁面热流密度对沿程壁面温度分布以及平均换热系数的影响,与前人关于螺旋管内常规流体流动换热的平均Nu的经验关系式进行了比较。并基于FLUENT软件进行了数值计算,并与实验结果进行了比较。分析表明,数值计算对壁面温度的预测有一定的适用性。  相似文献   

14.
利用环路热管换热技术对光子吸收器进行换热可以提高光子吸收器的换热效率、减小其结构尺寸,而且运行时无振动,是未来高性能加速器中设计光子吸收器的重要技术储备。分析环路热管在光子吸收器上应用时的传热性能,发现目前环路热管的换热能力完全满足光子吸收器的换热需求,但热沉的结构、特别是导热距离需要严格优化。利用航天五院C18型号环路热管,优化设计了一台环路热管式光子吸收器样机,数值模拟其运行时的温度分布,并实验测试了光子吸收器样机的总体换热能力。  相似文献   

15.
依据热力学第二定律,在分析热管运行过程的基础上,建立了热管工质循环过程的T-S熵分析模型,对热管稳态运行时的几何参数和工质流体热物性参数进行分析,推导得出了热管设计和成功运行的基本条件,热管的结构参数组必须大于工质的热物性参数和封装材料组,二者相容才能建立热管的热力循环。用试验结果验证了此结论。所推导的方程对于一定结构的热管提供了一个设计和运行的指导准则,并且与传热率无关,不管热流多大热管结构参数必须和材料相容。  相似文献   

16.
微热管以其效率高、响应快且无能耗,在高功率集成微电子散热方面应用广泛。针对电子器件的小型化、高能耗发展趋势,本文提出一种新型沟槽道微热管结构,对该沟槽道微热管进行稳态和瞬态热性能实验研究,研究了风速、角度、加热功率等因素对该新型热管的热性能影响规律。结果表明,该微热管在整个散热器传热上起主导作用,性能比达到0.88,冷凝端温差为0.8℃,具有良好的均温性,该微热管加热功率为140 W,空气流速1.5 m/s时,换热系数可达2 359 W/(m^2·℃),热阻为0.27℃/W;高功率状态下可保持良好的热扩散性能,有效避免微热管的热应力集中,有望高效解决集成电子器件的散热问题。  相似文献   

17.
张曼  杨帆  方贵银 《低温与超导》2007,35(4):338-340
动态冰浆由于具有较强的蓄能和传热能力,日益受到人们的重视。文中建立了动态冰浆传热特性的数理模型,并利用已知的载流溶液和冰晶的物性参数,得到了动态冰浆在水平直管、等热流加热条件下的传热系数,根据计算结果,分析了传热系数随着冰浆浓度的变化的规律和冰浆流速和管径对动态冰浆传热性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号