首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Scattering of plane longitudinal monochromatic waves from a heterogeneous inclusion of arbitrary shape in an infinite poroelastic medium is considered. Wave propagation in the medium is described by Biot’s equations of poroelasticity. The scattering problem is formulated in terms of the volume integral equations for displacements of the solid skeleton and fluid pressure in the pore space in the region occupied by the inclusion. An efficient numerical method is applied to solve these equations. In the method, Gaussian approximating functions are used for discretization of the problem. For regular node grids, the matrix of the discretized problem has Toeplitz’s properties, and the Fast Fourier Transform technique can be used for the calculation of matrix–vector products. The latter accelerates substantially the process of iterative solution of the discretized problem. For material parameters of typical sedimentary rocks, the system of differential equations of poroelasticity contains a differential operator with a small parameter. As the result, the wave field in the inclusion region is split up into a slowly changing part, and boundary layer functions concentrated near the inclusion interface. The method of matched asymptotic expansions is used for the numerical solution in this case. For a spherical inclusion, the results of the numerical and matched asymptotic expansion methods are compared with a semi-analytical series solution. For a non-spherical heterogeneous inclusion, an example of the numerical solution is presented.  相似文献   

2.
The stored energy functional of a homogeneous isotropic elastic body is invariant with respect to translation and rotation of a reference configuration. One can use Noether's Theorem to derive the conservation laws corresponding to these invariant transformations. These conservation laws provide an alternative way of formulating the system of equations governing equilibrium of a homogeneous isotropic body. The resulting system is mathematically identical to the system of equilibrium equations and constitutive relations, generally, of another material. This implies that each solution of the system of equilibrium equations gives rise to another solution, which describes the reciprocal deformation and solves the system of equilibrium equations of another material. In this paper we derive conservation laws and prove the theorem on conjugate solutions for two models of elastic homogeneous isotropic bodies – the model of a simple material and the model of a material with couple stress (Cosserat continuum). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Piezoelectric material containing an inhomogeneity with different electroelastic properties is considered. The coupled electroelastic fields within the inclusion satisfy a system of integral equations solved in a closed form in the case of an ellipsoidal inclusion. The solution is utilized to find the concentration of the electroelastic fields around an inhomogeneity, and to derive the expression for the electric enthalpy of the electroelastic medium with an ellipsoidal inclusion that is relevant for various applications. Explicit closed-form expressions are found for the electroelastic fields within a spheroidal inclusion embedded in the transversely isotropic matrix. Results are specialized for a cylinder, a flat rigid disk and a crack. For a penny-shaped crack, the quantities entering the crack propagation criterion are found explicitly. Received 17 February 2000; accepted for publication 9 May 2000  相似文献   

4.
This paper presents a two-dimensional contact stress analysis to investigate the effects of multiple inclusions on the contact pressure and subsurface stresses in an elastic half-plane. The boundary element method is used to analyze the contact problem where a set of integral equations is derived on the contact region and the matrix–inclusion interfaces. As the contact region is unknown a priori, an iterative procedure is implemented to determine the actual contact region and the contact pressure, and the tractions and displacements on the matrix–inclusion interfaces are obtained by solving the integral equations numerically. Numerical results show that the inclusions near contact surface could cause significant alterations in the contact pressure distribution. The stiff inclusions could toughen the surrounding material and reduce the internal stresses while the soft inclusions could increase the subsurface stresses.  相似文献   

5.
Solutions are presented for the effective shear modulus of two types of composite material models. The first type is that of a macroscopically isotropic composite medium containing spherical inclusions. The corresponding model employed is that involving three phases: the spherical inclusion, a spherical annulus of matrix material and an outer region of equivalent homogeneous material of unlimited extent. The corresponding two-dimensional, polar model is used to represent a transversely isotropic, fiber reinforced medium. In the latter case only the transverse effective shear modulus is obtained. The relative volumes of the inclusion phase to the matrix annulus phase in the three phase models are taken to be the given volume fractions of the inclusion phases in the composite materials at large. The results are found to differ from those of the well-known Kerner and Hermans formulae for the same models. The latter works are now understood to violate a continuity condition at the matrix to equivalent homogeneous medium interface. The present results are compared extensively with results from other related models. Conditions of linear elasticity are assumed.  相似文献   

6.
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.  相似文献   

7.
A problem of the beginning of motion of a finite-width cut in a linearly elastic plane under the action of symmetric external loading is formulated. The material on the way of cut propagation forms a layer (interaction layer). The stress-strain state of the material is postulated to be homogeneous across this layer. A system of integral boundary equations is obtained for determining the stress-strain state. Based on this system of equations, a discrete model of separation of the layer material is constructed under the assumption of a constant stress-strain state in an element of the interaction layer. The stress distribution in the pre-fracture zone is determined. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 134–140, January–February, 2009.  相似文献   

8.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

9.
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.  相似文献   

10.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

11.
The large deformation torsion problem for an elastic circular cylinder subject to prescribed twisting moments at its ends is examined for a particular homogeneous isotropic compressible material, namely the Blatz-Ko material. For this material, the displacement equations of equilibrium in three-dimensional elastostatics can lose ellipticity at sufficiently large deformations. For the torsion problem, it is shown that this occurs when the prescribed torque reaches a critical value. For values of the twisting moment greater than this critical value, there is an axial core of the cylinder on which ellipticity holds, surrounded by an annular region where loss of ellipticity has occurred. The physical implications in terms of localized shear bands are briefly discussed.  相似文献   

12.
The study considers plane steady flow of an incompressible fluid around a circular cylinder rotating in a homogeneous free stream. On the basis of an asymptotic analysis of the Navier-Stokes equations for high Reynolds numbers, it is shown that at a certain value of the angular velocity of the cylinder an interaction arises between the flow in the boundary layer and the external potential flow. A solution is obtained numerically which describes the flow in the region of interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–45, September–November, 1987.  相似文献   

13.
Within the context of linear elastodynamics, the radiated fields (including inertia) for a plane inhomogeneous inclusion boundary with transformation strain (or eigenstrain), moving in general motion under applied loading, have been obtained on the basis of Eshelby??s equivalent inclusion method, by using the strain field of a moving homogeneous inclusion boundary previously obtained. This dynamic strain field, obtained from the dynamic Green??s function (for an isotropic material), is unique, and has as initial condition the limit of the spherical Eshelby inclusion, as the radius tends to infinity, which is the minimum energy solution for the half-space inclusion. With the equivalent dynamic eigenstrain (which is dependent on the velocity of the boundary), the radiated fields for the inhomogeneous plane inclusion boundary can be obtained, and from them the driving force on the moving boundary can be computed, consisting of a self-force (which is the rate of mechanical work (including inertia) required to create an incremental region of inhomogeneity with eigenstrain), and of a Peach-Koehler force associated with the external loading. While for an expanding plane homogeneous inclusion boundary the Peach-Koehler force is independent of the boundary velocity, in the case of an inhomogeneous one it is not.  相似文献   

14.
Plane vortex-free sub- and supersonic gas flow is considered without taking account of viscosity and heat conduction. For the system of equations of motion of the mixed elliptic-hyperbolic type in the potential plane, a particular solution is found which corresponds to gas motion in a nozzle with a curved sonic line. The system of equations used to construct the solution is neatly homogeneous, which made it possible to separate the principal part of the solution in the transonic region. The validity of the simplifications made is well confirmed by comparison with calculation, using the method of characteristics, and with experiment.The author wishes to thank S. V. Fal'kovich for valuable comment on this study.  相似文献   

15.
Übersicht Im vorliegenden Beitrag wird die biharmonische Differentialgleichung mit vorgegebenen Randbedingungen au zwei gegenüberliegenden Rändern unter Anwendung von Differenzenausdrücken durch fünfgliedrige Matrizengleichungen dargestellt. Die vollständige Lösung dieser speziellen Klasse von Matrizengleichungen setzt sich aus einem inhomogenen Lösungsanteil und einem homogenen Lösungsanteil zusammen, der aus einer Summe von Produktion aus Eigenwerten, Eigenvektoren und freien Konstanten gebildet wird. Aus den Randbedingungen der beiden anderen gegenüberliegenden Rändern ergeben sich Bestimmungsgleichuugen für die in der homogenen Lösung enthaltenen freien Konstanten. Für den eingespannten Plattenstreifen werden die Eigenwerte und Eigenvektoren angegeben.
Summary The biharmonic differential equation with prescribed boundary conditions on two opposite edges is established using difference expression obtained from five-term matrix equations. A complete solution to this special category of matrix equations consists of an inhomogeneous and homogeneous part, which are obtained as a sum of products of eigenvalues, eigenvectors and free constants. Equations to determine the free constants in the homogeneous solution result from the boundary conditions of the two other opposite edges. Eigenvalues and eigenvectors for a clamped strip are given.
  相似文献   

16.
Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an analytical solution is obtained using the classical method of characteristics, followed by Taylor’s series expansion based on the assumption of weak flow which finally led to explicit functions for velocity, density and pressure. The solution enables plotting gas velocity, density and pressure variations in the porous medium, which is of high interest in the design of granular shock isolators.  相似文献   

17.
A numerical scheme for the transient solution of a generalized version of the Poisson–Nernst–Planck (PNP) equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The PNP equations represent a set of diffusion equations for charged species, i.e. dissolved ions, present in the pore solution of a rigid porous material in which the surface charge can be assumed neglectable. These equations are coupled to the ‘internally’ induced electrical field and to the velocity field of the fluid. The Nernst–Planck equations describing the diffusion of the ionic species and Gauss’ law in use are, however, coupled in both directions. The governing set of equations is derived from a simplified version of the so-called hybrid mixture theory (HMT). The simplifications used here mainly concerns ignoring the deformation and stresses in the porous material in which the ionic diffusion occurs. The HMT is a special version of the more ‘classical’ continuum mixture theories in the sense that it works with averaged equations at macroscale and that it includes the volume fractions of phases in its structure. The background to the PNP equations can by the HMT approach be described by using the postulates of mass conservation of constituents together with Gauss’ law used together with consistent constitutive laws. The HMT theory includes the constituent forms of the quasistatic version of Maxwell’s equations making it suitable for analyses of the kind addressed in this work. Within the framework of HTM, constitutive equations have been derived using the postulate of entropy inequality together with the technique of identifying properties by Lagrange multipliers. These results will be used in obtaining a closed set of equations for the present problem.  相似文献   

18.
In A fibre-reinforced 2D composite material with elastic fibres and viscoelastic, isotropic matrix is studied. Starting from the solution of a reference-problem with elastic matrix material the elastic matrix parameters are substituted by their viscoelastic correspondents in the Laplace domain. For simplification the time-dependent solution is approximated by using limiting value theorems that give information about the time-dependent solution for t → 0 and t → ∞. Then the method of asymptotically equivalent functions is used and illustrated with examples of a steel fibre in a PMMA matrix. The analytical solutions are compared with their numerical counterparts. In summary it can be stated that this paper is a further contribution to the vast literature about the application of the correspondence principle to the solution of special problems of the linear viscoelasticity.  相似文献   

19.
We pose and study the problem on an inclusion experiencing a phase transition in a homogeneous external stress field transferred by a matrix. The matrix is formed by a linear-elastic material. The inclusion material admits phase transitions under strain, and the passage from one phase state into another, as well as two-phase states, is determined by the energy preference considerations and the possible existence of two-phase states. For the simplest problem we consider the problem of phase transitions in a cylindrical inclusion under homogeneous plane strain conditions. In the space of strains, we construct the domains of existence of the inclusion one-phase states and the switching surfaces between the one-phase states. We study the possibility of the inclusion two-phase states, prove the characteristic properties of axisymmetric two-phase strains, and examine their stability. We also demonstrate the scale effect, namely, the influence of the relative dimensions of the inclusion and the body on the inclusion phase state. In the second part of the paper, we study the interaction between an inclusion experiencing phase transitions and a crack.  相似文献   

20.
The paper is concerned with composite materials which consist of a homogeneous matrix phase with a set of inclusions uniformly distributed in the matrix. The components of these materials are considered to be ideally elastic and exhibit piezoelectric properties. One of the variants of the self-consistent scheme, the Effective Field Method (EFM) is applied to calculate effective dielectric, piezoelectric and thermoelastic properties of such materials, taking into account the coupled electroelastic effects. At first the coupled thermoelectroelastic problem for a homogeneous medium with an isolated inclusion is solved. For an ellipsoidal inclusion and constant external field the solution of this problem is found in a closed analytic form. This solution is then used in the EFM to derive the effective thermoelectroelastic operator for the composite containing a random array of ellipsoidal inclusions. Explicit formulae for the electrothermoelastic constants are given for composites, reinforced by spheroidal inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号