首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冲击荷载作用下混凝土材料的细观本构模型   总被引:8,自引:0,他引:8  
将混凝土材料看成是水泥砂浆基体和粗骨料颗粒组成的2相复合材料,假设水泥砂浆基体和粗骨料颗粒均为弹性、均匀、各向同性的,粗骨料颗粒为球形。基于Mori-Tanaka理论和Eshelby 等效夹杂理论推出了混凝土材料弹性模量的计算公式。在Horii和Nemat-Nasser提出的脆性材料在双轴向压应力作用下破坏的滑移裂纹模型基础上,运用细观力学方法推导了微裂纹对材料弹性模量的弱化作用以及微裂纹的损伤演化方程。建立了混凝土材料在冲击荷载作用下的一维动态本构模型,模拟曲线与实验曲线符合良好,因而可以用该模型模拟混凝土材料在冲击荷载下的动态特性。  相似文献   

2.
A model describing the development of transient layers as new phase domains in compositematerials is constructed under the assumption that the transient layers around (nano)particles are layers of the matrix material changed by the phase transformation and increase the effective volume of inclusions which become compound and consist of the nucleus (original particle) and the shell (transient layer of the new phase). As a result, the inclusion volume fraction increases, which, in turn, increases the particle influence efficiency. An example of spherical particles is used to consider the new phase development around an isolated particle and then, in the effective field approximation, around interacting particles in the composite material. The dependence of the compound inclusion radius on the external (averaged) strain is obtained for isotropic phases. Stability of the interphase boundaries depending on the parameters of the original inclusion material and the matrix phase materials is studied. The energy variations and the stress redistribution owing to the development of the new phase domains are considered in detail. It is shown that, in the case of an isolated inclusion, the development of a new phase may lead to a local energy decrease near the inclusions and, as a consequence, to a decrease in the stress concentration. At the same time, the formation of transient layers due to the phase transformation can result in an increase in the bulk modulus of elasticity as the effective shear modulus decreases.  相似文献   

3.
The classical generalized self-consistent model (GSCM) is recognized to be suitable and efficient for estimating the effective moduli of an isotropic composite consisting of an isotropic host matrix and an isotropic inclusion phase. The present work aims to enlarge the scope of the GSCM so that it becomes applicable to a good number of important situations where the phases cannot be differentiated as the host matrix and inclusions. This objective is achieved first by inserting into the unknown effective medium a coated composite sphere whose core is made of the unknown effective medium and whose coatings are formed of the constituent phases and then by imposing an energy equivalency condition. The equations thus obtained to characterize the effective bulk and shear moduli involve a microstructural parameter which turns out to be capable of describing in some sense how far a microstructure is from the host matrix/inclusion morphology. The important case of two-phase composites is studied in detail to illustrate the salient features of the proposed model.  相似文献   

4.
Recent theoretical and experimental results have shown the possibility of enormous increases in composite material overall elastic stiffness, damping, thermal expansion, piezoelectricity, etc., when the composite contains a tuned non-positive-definite (i.e., negative stiffness) constituent. For such composite materials to have practical utility, they must be stable. Recent research has shown they can be, for a limited range of constituent negative stiffness. This research has treated linear elastic composite materials with homogeneous phases, via the energy method and full dynamic stability analyses.In the present work, we first show how to analyze the composites previously treated by the comprehensive but simpler static stability approach, obtaining closed-form results. We then employ this approach to show that permitting heterogeneity of the positive-definite phase can substantially increase the range of constituent negative stiffness while maintaining overall composite stability. We first treat the positive-definite phase heterogeneity as piecewise homogeneous, and then treat it as continuously-varying. In the continuously-varying heterogeneity case, we seek the radially optimal distribution of the elastic moduli in the coatings, under constant coating average moduli constraint, to permit the most negative possible inclusion stiffness while maintaining overall composite stability. This is accomplished for three coating cases: constant bulk modulus but arbitrarily radially-varying shear modulus; constant shear modulus but arbitrarily radially-varying bulk modulus; and both moduli arbitrarily radially varying. We find the optimal coatings to be: a heterogeneous one with shear modulus being a specific continuously decreasing function of radius for the first case; a homogeneous one for the second case; and a heterogeneous one with both moduli being either Dirac-delta or Heaviside-step decreasing functions of radius for the last case (if the coating moduli are unrestricted in magnitude or have upper limits, respectively). The results show a substantial increase in the permissible inclusion negative stiffness range is provided by coating heterogeneity, while maintaining overall composite stability. Such an increased range of constituent negative stiffness provides an enlarged tuning parameter range for the development of novel, high-performance composite materials.  相似文献   

5.
基于复变函数理论和边界配点法,探索了功能梯度界面相在周期均匀分布纤维增强复合材料反平面剪切问题中所起的作用。由于纤维在复合材料基体中的周期分布是均匀的,将其简化成含一功能梯度界面相夹杂的方形单胞。采用分层均匀化方法,将功能梯度界面相离散成K层界面层。当K足够大时,每个界面层可视为匀质材料,同时计算得到的复合材料宏观性能趋于定值。根据单胞内的基体、界面相和夹杂的几何外形特点,分别给出复势函数的级数形式,这些复势函数在各组分的相邻界面应满足连续性条件,在单胞的外边界应满足周期性边界条件和远场加载条件,从而确定复势函数中的待定系数,进而根据平均场理论确定复合材料有效模量。主要探讨了夹杂体积分数、各组分模量、功能梯度界面相的模量渐变形式等因素对纤维增强复合材料性能的影响。结果表明:不管基体模量相对于夹杂模量是大还是小,都有对应的界面相模量渐变形式可使夹杂周围的等效应力集中系数减小;另外还发现仅当夹杂模量较大时,功能梯度界面相模量的变化方式对复合材料有效模量产生不可忽视的影响。  相似文献   

6.
A general expression for the energy-density function of sequentially laminated composites is derived. For the class of neo-Hookean composites in the limit of small deformations well-known results for linear transversely isotropic composites are recovered. However, it is shown that under large deformations these composites are not isotropic. Transversely isotropic composites are obtained with sequentially-coated composites in which the next rank composite is constructed by lamination of the previous composite with thin layers of the matrix phase. The transverse behavior of this sequentially-coated composite is neo-Hookean with shear modulus in the form of the Hashin-Shtrikman bounds for the corresponding class of linear composites. Comparison of the behaviors of these composites with recent estimates for transversely isotropic composites reveals good agreement up to relatively large deformations and volume fractions of the inclusion phase.  相似文献   

7.
The determination of an effective property in composite materials necessitates the knowledge of some averaged field quantities in the constituents (like the average heat intensity or average strain) of a composite sample, which is subjected to homogeneous boundary conditions. In the generalized self-consistent scheme (GSCS) which is today a classical micromechanics model suited for the determination of the effective properties of matrix-based composites, those average quantities are estimated by using an auxiliary configuration in which a particulate phase is first surrounded by some matrix material and then embedded in the effective medium. In the present study, we revisit the GSCS both for two- and multi-phase matrix-based composites containing spherical particles, and clarify aspects related to the volume fractions of the particle core and matrix shell within the composite element which is embedded in the effective medium. The contribution of this study is believed to be mainly on the conceptual side and resides in a new formulation of the method in which the embedding volume fractions are determined in the course of the analysis by means of some fundamental relations on the averaged fields. The study is carried out in thermal conduction and elasticity and contains new results on the effective shear modulus of multi-phase composites.  相似文献   

8.
1.IntroductionThecompositereinforcedbysphericalparticlesisanilllportantengilleel-lugmaterial.Itiswidelyusedinvariousfieldsuchasaviationandspaceflight.Withl'egardtoitsefttctivemodulusproblenl,maily1llodelsandmethodswereproposedillpilotyeal's.Somethed.eticalpredictionlbrnlulaehavebeenobtailledtitpresent,whicharequiteinagreementwithexpel.imelltalresultslll.FIowcver,becausedemandingl'orcompositeincllglneeri11gtlpplicationbecomeslargel'daybyday,theSurftlcecoatillgofreinforcednlatel.iLtlincomposit…  相似文献   

9.
A generic mechanical model for bio-composites, including stiff platelets arranged in a staggered order inside a homogeneous soft matrix, is proposed. Equations are formulated in terms of displacements and are characterized by a set of non-dimensional parameters. The displacements, stress fields and effective modulus of the composite are formulated. Two analytical models are proposed, one which includes the shear deformations along the entire medium and another simplified model, which is applicable to a slender geometry and yields a compact expression for the effective modulus. The results from the models are validated by numerical finite element simulations and found to be compatible with each other for a wide range of geometrical and material properties. Finally, the models are solved for two bio-structures, nacre and a collagen fibril, and their solutions are discussed.  相似文献   

10.
The present work is devoted to the determination of the macroscopic poroelastic properties of anisotropic elastic porous materials saturated by a fluid under pressure. It makes use of the theoretical results provided by Withers [Withers, P.J., 1989. The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine A 59 (4), 759–781.] for the problem of an ellipsoidal inclusion embedded in a transversely isotropic elastic medium. The particular case of a spherical inclusion is very important for rock-like composites such as argillite and shales. The implementation of these results in a micromechanical theory of poroelasticity allows to quantify the effects of the solid matrix anisotropy and of pore space on the effective poromechanical properties. Closed form expressions of Biot tensor and of Biot modulus are presented as well as numerical applications for anisotropic shales.  相似文献   

11.
A statistical continuum mechanics formulation is presented to predict the inelastic behavior of a medium consisting of two isotropic phases. The phase distribution and morphology are represented by a two-point probability function. The isotropic behavior of the single phase medium is represented by a power law relationship between the strain rate and the resolved local shear stress. It is assumed that the elastic contribution to deformation is negligible. A Green’s function solution to the equations of stress equilibrium is used to obtain the constitutive law for the heterogeneous medium. This relationship links the local velocity gradient to the macroscopic velocity gradient and local viscoplastic modulus. The statistical continuum theory is introduced into the localization relation to obtain a closed form solution. Using a Taylor series expansion an approximate solution is obtained and compared to the Taylor’s upper-bound for the inelastic effective modulus. The model is applied for the two classical cases of spherical and unidirectional discontinuous fiber-reinforced two-phase media with varying size and orientation.  相似文献   

12.
Propagation of P-wave in an unbounded elastic polymer medium which contains a set of nested concentric spherical piezoelectric inhomogeneities is formulated. The polymer matrix is made of Epoxy and is isotropic; each phase of the inhomogeneity is made of a different piezoelectric material and is radially polarized and has spherical isotropy. Note that the individual phases are homogeneous, and all interfaces are perfectly bonded. The scattered displacement and electric potentials in the matrix are expressed in terms of spherical wave vector functions and Legendre functions, respectively. The transmitted displacement and electric potentials within each phase of the piezoelectric particle are expressed in terms of Legendre functions. The equations of motion and electrostatics in each phase of the piezoelectric inhomogeneity lead to a system of coupled second order differential equations, which is solved using the generalized Frobenius series. The present theory is extended to the case where the core of the inhomogeneity is made of PZT-4 and its coating is made of functionally graded piezoelectric material (FGPM) whose microstructural composition varies smoothly from PZT-4 at the core–coating interface to Epoxy at the coating–matrix interface. The effects of different types of variation in the electro-mechanical properties of FGPM on scattering cross-section and other electro-mechanical fields are addressed. The present theory is valid for arbitrary coating thickness, and arbitrary frequencies.  相似文献   

13.
The present paper deals with spherically symmetric deformation of an inclusion- matrix problem, which consists of an infinite isotropic matrix and a spherically uniform anisotropic piezoelectric inclusion. The interface between the two phases is supposed to be perfect and the system is subjected to uniform loadings at infinity. Exact solutions are obtained for solid spherical piezoelectric inclusion and isotropic matrix. When the system is subjected to a remote traction, analytical results show that remarkable nature exists in the spherical inclusion. It is demonstrated that an infinite stress appears at the center of the inclusion. Furthermore, a cavitation may occur at the center of the inclusion when the system is subjected to uniform tension, while a black hole may be formed at the center of the inclusion when the applied traction is uniform pressure. The appearance of different remarkable nature depends only on one non-dimensional material parameter and the type of the remote traction, while is independent of the magnitude of the traction.  相似文献   

14.
Under investigation is a heterogeneous material consisting of an elastic homogeneous isotropic matrix in which layered elastic isotropic inclusions or pores are embedded. The generalized self-consistent model (GSCM) is extended so as to be capable of estimating the apparent elastic properties of a finite-size specimen smaller than a representative volume element (RVE). The kinematical or static apparent shear modulus is determined as a root of a cubic polynomial equation instead of a quadratic polynomial equation as in the classical GSCM of Christensen and Lo [Christensen, R.M., Lo, K.H., 1979. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330]. It turns out that the extended GSCM establishes a link between the composite sphere assemblage model (CSAM) of Hashin [Hashin, Z., 1962. The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143–150] and the classical GSCM. Demanding that the normalized distance between the kinematical and static apparent moduli of a finite-size specimen be smaller than a certain tolerance, the minimum RVE size is estimated in a closed form.  相似文献   

15.
The interaction between an elliptical crack and a spherical inhomogeneity embedded in a three-dimensional solid subject to uniaxial tension is investigated. Both the inhomogeneity and the solid are isotropic but have different elastic moduli. The Eshelby's equivalent inclusion method is applied together with the principle of superposition. An approximate solution for the stress intensity factor is obtained by an approach that expands the distance between the center of the crack and inhomogeneity in series. The local stress field can be increased or decreased depending on the relative modulus of the spherical inhomogeneity and matrix. If the inhomogeneity modulus is larger than that of the matrix, a reduction in the stress intensity factor prevails. Displayed numerically are results to exhibit the influence of inhomogeneity and its distance to the crack.  相似文献   

16.
When a crack is lodged in an inclusion, both difference between the modulus of the inclusion and matrix material and stress-free transformation strain of the inclusion will cause the near-tip stress intensity factor to be greater (amplification effect) or less (shielding or toughening effect) than that prevailing in a homogeneous material. In this paper, the inclusion may represent a second phase particle in composites and a transformation or microcracked process zone in brittle materials, which may undergo a stress-free transformation strain induced by phase transformation, microcracking, thermal expansion mismatch and so forth. A close form of solution is derived for predicting the toughening (or amplification) effect. The derivation is based on Eshelby equivalent inclusion approach that provides rigorous theoretical basis to unify the modulus and transformation contributions to the near-tip field. As validated by numerical examples, the developed formula has excellent accuracy for different application cases.  相似文献   

17.
Within the framework of the linear theory of magnetoelectroelasticity, the problem of a circular layered inclusion interacting with a generalized screw dislocation under remote anti-plane shear stress and in-plane magnetoelectric loads is investigated in this paper. The generalized dislocation can be located either in the matrix or in the circular layered inclusion. The layers are coaxial cylinders of annular cross-sections with arbitrary radii and different material properties. Using complex variable theory and the alternating technique, the solution of the present problem is expressed in terms of the solution of the corresponding homogeneous medium problem subjected to the same loading. Some numerical results are provided to investigate the influence of material combinations on the shear stress, electric field, magnetic and image force. These solutions can be used as Green's functions for the analysis of the corresponding magnetoelectric crack problem.  相似文献   

18.
The main purpose of this work is the computational simulation of the sensitivity coefficients of the homogenized tensor for a polymer filled with rubber particles with respect to the material parameters of the constituents. The Representative Volume Element (RVE) of this composite contains a single spherical particle, and the composite components are treated as homogeneous isotropic media, resulting in an isotropic effective homogenized material. The sensitivity analysis presented in this paper is performed via the provided semi-analytical technique using the commercial FEM code ABAQUS and the symbolic computation package MAPLE. The analytical method applied for comparison uses the additional algebraic formulas derived for the homogenized tensor for a medium filled with spherical inclusions, while the FEM-based technique employs the polynomial response functions recovered from the Weighted Least-Squares Method. The homogenization technique consists of equating the strain energies for the real composite and the artificial isotropic material characterized by the effective elasticity tensor. The homogenization problem is solved using ABAQUS by the application of uniform deformations on specific outer surfaces of the composite RVE and the use of tetrahedral finite elements C3D4. The energy approach will allow for the future application of more realistic constitutive models of rubber-filled polymers such as that of Mullins and for RVEs of larger size that contain an agglomeration of rubber particles.  相似文献   

19.
纳米夹杂复合材料的有效反平面剪切模量研究   总被引:1,自引:0,他引:1  
基于Gurtin-Murdoch表面/界面理论模型,利用复变函数方法,获得了考虑夹杂界面应力时夹杂/基体/等效介质模型的全场精确解,发展了能够预测纳米夹杂复合材料有效反平面剪切模量的广义自洽方法,给出了复合材料有效反平面剪切模量的封闭形式解。数值结果显示:当夹杂尺寸在纳米量级时,复合材料的有效反平面剪切模量具有尺度相关性,随着夹杂尺寸的增大,本文结果趋近于经典弹性理论的预测值;夹杂尺寸对于有效反平面剪切模量(本文结果)的影响范围要小于其对有效体积模量与剪切模量(各向同性材料)的影响范围;有效反平面剪切模量受夹杂的界面性能和夹杂刚度影响显著。  相似文献   

20.
仲政 《力学季刊》1998,19(4):319-325
本文研究了具有线弹簧弱界面的异质球形夹杂的本征应变问题,所采用的线弹簧界面模型既能界面的切线方向滑动,又能考虑界面的法线方向张开,根据叠加原理、原问题的弹性场可分成三部分;二部分由真实均匀本征应变所引起,另一部分由等效的非均匀本征应变所引起,后一部分则由虚拟的Somigliana位错场所产生。本文求得了等效非均匀本征应变和虚拟位错场的Burger矢量的解析表达式,进而确定的问题的弹性场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号