首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
Analysis of a viral infection model with delayed immune response   总被引:1,自引:0,他引:1  
It is well known that the immune response plays an important role in eliminating or controlling the disease after human body is infected by virus. In this paper, we investigate the dynamical behavior of a viral infection model with retarded immune response. The effect of time delay on stability of the equilibria of the system has been studied and sufficient condition for local asymptotic stability of the infected equilibrium and global asymptotic stability of the infection-free equilibrium and the immune-exhausted equilibrium are given. By numerical simulating,we observe that the stationary solution becomes unstable at some critical immune response time, while the delay time and birth rate of susceptible host cells increase, and we also discover the occurrence of stable periodic solutions and chaotic dynamical behavior. The results can be used to explain the complexity of the immune state of patients.  相似文献   

2.
This paper describes a modified Leslie–Gower type three species food chain model with harvesting. We have incorporated impulsive control strategy to the system. Theories of impulsive differential equations, small amplitude perturbation skills and comparison technique are used to study dynamical behavior of the system. Sufficient conditions are derived to ensure global stability of the lowest-level prey and mid-level predator eradication periodic solution. Sufficient conditions are also derived to examine the permanence of the system. Numerical simulations are carried out to verify the analytical results, and the system is analyzed through graphical illustrations. It is observed that the stability of the system exhibits several states, ranging from stable situation to cyclic oscillatory behavior, under different favorable conditions. These results are useful to study the dynamic complexity of ecological systems. The computation of the largest Lyapunov exponent demonstrates the chaotic dynamic nature of the system. The qualitative nature of strange attractor is examined. It is to be noted that the harvesting effort can cause a stable equilibrium to become unstable and even a switching of stabilities.  相似文献   

3.
In this paper a new three-dimensional chaotic system is introduced. Some basic dynamical properties are analyzed to show chaotic behavior of the presented system. These properties are covered by dissipation of system, instability of equilibria, strange attractor, Lyapunov exponents, fractal dimension and sensitivity to initial conditions. Through altering one of the system parameters, various dynamical behaviors are observed which included chaos, periodic and convergence to an equilibrium point. Eventually, an analog circuit is designed and implemented experimentally to realize the chaotic system.  相似文献   

4.
Different methods are proposed to control chaotic behaviour of the Nuclear Spin Generator (NSG) and Rossler continuous dynamical systems. Linear and nonlinear feedback control techniques are used to suppress chaos. The stabilization of unstable fixed point or unstable periodic solution of chaotic behaviour is achieved. The controlled system is stable under some conditions on the parameters of the system. Stability of the controlled system is determined by the Routh–Hurwitz criterion and Lyapunov direct method. Numerical simulation results are included to show the control process.  相似文献   

5.
In this paper, a four-dimensional (4D) continuous-time autonomous hyperchaotic system with only one equilibrium is introduced and analyzed. This hyperchaotic system is constructed by adding a linear controller to the second equation of the 3D Lorenz system. Some complex dynamical behaviors of the hyperchaotic system are investigated, revealing many interesting properties: (i) existence of periodic orbit with two zero Lyapunov exponents; (ii) existence of chaotic orbit with two zero Lyapunov exponents; (iii) chaos depending on initial value w0; (iv) chaos with only one equilibrium; and (v) hyperchaos with only one equilibrium. Finally, two complete mathematical characterizations for 4D Hopf bifurcation are derived and studied.  相似文献   

6.
In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincaré maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincaré sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.  相似文献   

7.
多频激励软弹簧型Duffing系统中的混沌   总被引:8,自引:0,他引:8  
研究了多频激励下的软弹簧型Duffing系统的混沌动力学,发现混沌产生的根本原因是系统相空间中横截异宿环面的存在.建立了双频激励情况下二维环面上的Poincaré映射、稳定流形和不稳定流形,应用Melnikov方法给出了稳定流形和不稳定流形横截相交的条件,并将此方法推广到激励包含有限多个频率的情形.推广了Melnikov方法在高维系统中的应用,给出了Smale马蹄意义下混沌存在的判据.同时证明,激励频率数目的增加扩大了参数空间上的混沌区域.  相似文献   

8.
This paper investigates the complex dynamics in a discrete-time model of predator–prey interaction with a Beddington–DeAngelis functional response. Local stability analysis of this model is carried out and many forms of complexities are observed using ecology theories and numerical simulation of the global behavior. Furthermore, the existence of a strange attractor and computation of the largest Lyapunov exponent also demonstrate the chaotic dynamic behavior of the model. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics.  相似文献   

9.
Duffing's equation with two external forcing terms have been discussed. The threshold values of chaotic motion under the periodic and quasi-periodic perturbations are obtained by using second-order averaging method and Melnikov's method. Numerical simulations not only show the consistence with the theoretical analysis but also exhibit the interesting bifurcation diagrams and the more new complex dynamical behaviors, including period-n (n=2,3,6,8) orbits, cascades of period-doubling and reverse period doubling bifurcations, quasi-periodic orbit, period windows, bubble from period-one to period-two, onset of chaos, hopping behavior of chaos, transient chaos, chaotic attractors and strange non-chaotic attractor, crisis which depends on the frequencies, amplitudes and damping. In particular, the second frequency plays a very important role for dynamics of the system, and the system can leave chaotic region to periodic motions by adjusting some parameter which can be considered as an control strategy of chaos. The computation of Lyapunov exponents confirm the dynamical behaviors.  相似文献   

10.
In this paper, a new 3D autonomous Lorenz-type chaotic system is modelled based on the condition that the system may generate chaos whereas it has only stable or non-hyperbolic equilibrium points. This system also includes some well-known Lorenz-like systems as its special cases, such as the diffusionless Lorenz system, the Burke-Shaw system and some other systems found. Although the new chaotic system is similar to other Lorenz-type systems in algebraic structure, they are topologically non-equivalent. This interesting fact motivates one to further investigate its dynamical behaviours, such as the number and the stability of equilibrium points, Hopf bifurcation and its direction, Poincaré maps, Lyapunov exponents and dissipativity, etc. Given numerical simulations not only verify the corresponding theoretically analytical results, but also demonstrate that this system possesses abundant and complex dynamical properties, which need further attention.  相似文献   

11.
In this paper, a discrete-time predator-prey system with Holling-IV functional response is studied. We first classify the existence of the fixed points of the system, and further investigate their local stabilities. Then the local bifurcation theory for maps is applied to explore the variety of dynamics of the system. Sufficient conditions for the flip bifurcation and Neimark–Sacker bifurcation are provided. Numerical results demonstrate that the system may have more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behavior. The maximum Lyapunov exponent and sensitivity analysis also confirm the chaotic dynamical behaviors of the system.  相似文献   

12.
13.
The time evolution of prices and savings in a stock market is modeled by a discrete time nonlinear dynamical system. The model proposed has a unique and unstable steady-state, so that the time evolution is determined by the nonlinear effects acting out of the equilibrium. The nonlinearities strongly influence the kind of long-run dynamics of the system. In particular, the global geometric properties of the noninvertible map of the plane, whose iteration gives the evolution of the system, are important to understand the global bifurcations which change the qualitative properties of the asymptotic dynamics. Such global bifurcations are studied by geometric and numerical methods based on the theory of critical curves, a powerful tool for the characterization of the global dynamical properties of noninvertible mappings of the plane. The model unfolds more complex chaotic and unpredictable trajectories as a consequence of increasing agents' “speculative” or “capital gain realizing” attitudes. The global analysis indicates that, for some ranges of the parameter values, the system has several coexisting attractors, and it may not be robust with respect to exogenous shocks due to the complexity of the basins of attraction.  相似文献   

14.
研究节点输出耦合混沌复杂动态网络不稳定平衡点的控制问题,基于输出控制思想,提出网络节点不稳定平衡点的全局控制方法以及牵制控制方法,将混沌复杂动态网络的所有节点镇定到其平衡点.利用李稚普诺夫稳定性理论,得到控制器参数选择条件,以蔡氏混沌电路作为网络节点动态进行仿真研究,证明该方法的有效性.  相似文献   

15.
This paper reports a new four-dimensional energy resources chaotic system. The system is obtained by adding a new variable to a three-dimensional energy resource demand–supply system established for two regions of China. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and bifurcation diagrams. Linear feedback control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. Numerical simulations are presented to show these results.  相似文献   

16.
In this paper, a novel four-dimensional autonomous system in which each equation contains a quadratic cross-product term is constructed. It exhibits extremely rich dynamical behaviors, including 3-tori (triple tori), 2-tori (quasi-periodic), limit cycles (periodic), chaotic and hyperchaotic attractors. In particular, we observe 3-torus phenomena, which have been rarely reported in four-dimensional autonomous systems in previous work. With the parameter r varying in quite a wide range, the evolution process of the system begins from 3-tori, and after going through a series of periodic, quasi-periodic and chaotic attractors in so many different shapes coming into being alternately, it evolves into hyperchaos, finally it degenerates to periodic attractor. Moreover, when the system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of the hyperchaotic systems already reported, especially the largest Lyapunov exponents. We also observe a chaotic attractor of a very special shape. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation diagram and phase portraits.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(17-18):4445-4459
In this paper, we introduce a new hyperchaotic complex Chen model. This hyperchaotic complex system is constructed by adding a complex nonlinear term to the third equation of the chaotic complex Chen system with consideration it’s all variables are complex. The new system is a 6-dimensional continuous real autonomous hyperchaotic system. The properties of this system including invariance, dissipation, equilibria and their stability, Lyapunov exponents, Lyapunov dimension, bifurcation diagrams and hyperchaotic behavior are studied. Different forms of hyperchaotic complex Chen systems are constructed. We suppress the hyperchaotic behavior of our system via passive control method by using one complex controller. The hyperchaotic attractors of the new system are converted to its unstable trivial fixed point and tracked to its unstable non trivial fixed points and periodic orbits. Block diagrams of our system are designed by using Matlab/Simulink after and before the suppression process to ensure the validity of the analytical results.  相似文献   

18.
This paper deals with the global analysis of a dynamical model for the spread of tuberculosis with a general contact rate. The model exhibits the traditional threshold behavior. We prove that when the basic reproduction ratio is less than unity, then the disease-free equilibrium is globally asymptotically stable and when the basic reproduction ratio is great than unity, a unique endemic equilibrium exists and is globally asymptotically stable under certain conditions. The stability of equilibria is derived through the use of Lyapunov stability theory and LaSalle’s invariant set theorem. Numerical simulations are provided to illustrate the theoretical results.  相似文献   

19.
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge–Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.  相似文献   

20.
If you are given a simple three-dimensional autonomous quadratic system that has only one stable equilibrium, what would you predict its dynamics to be, stable or periodic? Will it be surprising if you are shown that such a system is actually chaotic? Although chaos theory for three-dimensional autonomous systems has been intensively and extensively studied since the time of Lorenz in the 1960s, and the theory has become quite mature today, it seems that no one would anticipate a possibility of finding a three-dimensional autonomous quadratic chaotic system with only one stable equilibrium. The discovery of the new system, to be reported in this Letter, is indeed striking because for a three-dimensional autonomous quadratic system with a single stable node-focus equilibrium, one typically would anticipate non-chaotic and even asymptotically converging behaviors. Although the equilibrium is changed from an unstable saddle-focus to a stable node-focus, therefore the familiar Ši’lnikov homoclinic criterion is not applicable, it is demonstrated to be chaotic in the sense of having a positive largest Lyapunov exponent, a fractional dimension, a continuous broad frequency spectrum, and a period-doubling route to chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号