首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
刘会坡 《计算数学》2015,37(3):264-272
 本文研究了全离散方法求解二维中子输运方程的有限元自适应算法, 角度变量用离散纵坐标方法展开, 空间变量用间断元方法求解. 基于间断元方法给出了空间离散的残量型后验误差估计. 在后验误差估计的基础上, 我们设计了自适应有限元算法.由残量型后验估计可以给出局部加密网格的自适应算法. 最后, 我们给出了数值算例来验证我们的理论结果.  相似文献   

3.
Adjoint techniques are a common tool in the numerical treatment of optimal control problems. They are used for efficient evaluations of the gradient of the objective in gradient-based optimization algorithms. Different adjoint techniques for the optimal control of Burgers equation with Neumann boundary control are studied. The methods differ in the point in the numerical algorithm at which the adjoints are incorporated. Discretization methods for the continuous adjoint are discussed and compared with methods applying the application of the discrete adjoint. At the example of the implicit Euler method and the Crank Nicolson method it is shown that a discretization for the adjoint problem that is adjoint to the discretized optimal control problem avoids additional errors in gradient-based optimization algorithms. The approach of discrete adjoints coincides with that of automatic differentiation tools (AD) which provide exact gradient calculations on the discrete level.  相似文献   

4.
In this short note, we address the discretization of optimal control problems with higher order polynomials. We develop a necessary and sufficient condition to ensure that weak limits of discrete feasible controls are feasible for the original problem. We show by means of a simple counterexample that a naive discretization by higher order polynomials can lead to non-feasible limits of sequences of discrete solutions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Anders Logg 《PAMM》2007,7(1):1010601-1010602
Differential equations are solved routinely by large computer programs, but the solution process is rarely automated. Each equation requires a different program and each such program requires a considerable amount of work to develop and maintain. The FEniCS project provides a set of tools that automate important aspects of the solution process, ultimately aiming at a complete automation of computational mathematical modeling, including the automation of discretization, discrete solution, error control, modeling and optimization. A key component of FEniCS is the FEniCS Form Compiler (FFC), which automates the discretization of differential equations by taking as input a variational problem in mathematical notation and generating highly efficient optimized low-level code for the evaluation of the corresponding discrete operator. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

7.
Rough set feature selection (RSFS) can be used to improve classifier performance. RSFS removes redundant attributes whilst retaining important ones that preserve the classification power of the original dataset. Reducts are feature subsets selected by RSFS. Core is the intersection of all the reducts of a dataset. RSFS can only handle discrete attributes, hence, continuous attributes need to be discretized before being input to RSFS. Discretization determines the core size of a discrete dataset. However, current discretization methods do not consider the core size during discretization. Earlier work has proposed core-generating approximate minimum entropy discretization (C-GAME) algorithm which selects the maximum number of minimum entropy cuts capable of generating a non-empty core within a discrete dataset. The contributions of this paper are as follows: (1) the C-GAME algorithm is improved by adding a new type of constraint to eliminate the possibility that only a single reduct is present in a C-GAME-discrete dataset; (2) performance evaluation of C-GAME in comparison to C4.5, multi-layer perceptrons, RBF networks and k-nearest neighbours classifiers on ten datasets chosen from the UCI Machine Learning Repository; (3) performance evaluation of C-GAME in comparison to Recursive Minimum Entropy Partition (RMEP), Chimerge, Boolean Reasoning and Equal Frequency discretization algorithms on the ten datasets; (4) evaluation of the effects of C-GAME and the other four discretization methods on the sizes of reducts; (5) an upper bound is defined on the total number of reducts within a dataset; (6) the effects of different discretization algorithms on the total number of reducts are analysed; (7) performance analysis of two RSFS algorithms (a genetic algorithm and Johnson’s algorithm).  相似文献   

8.
We investigate Euler discretization for a class of optimal control problems with a nonlinear cost functional of Mayer type, a nonlinear system equation with control appearing linearly and constraints defined by lower and upper bounds for the controls. Under the assumption that the cost functional satisfies a growth condition we prove for the discrete solutions Hölder type error estimates w.r.t. the mesh size of the discretization. If a stronger second-order optimality condition is satisfied the order of convergence can be improved. Numerical experiments confirm the theoretical findings.  相似文献   

9.
In this paper we analyze the discretization of optimal control problems governed by convection-diffusion equations which are subject to pointwise control constraints. We present a stabilization scheme which leads to improved approximate solutions even on corse meshes in the convection dominated case. Moreover, the in general different approaches “optimize-then- discretize” and “discretize-then-optimize” coincide for the proposed discretization scheme. This allows for a symmetric optimality system at the discrete level and optimal order of convergence.  相似文献   

10.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

11.
In this paper, we investigate the superconvergence of fully discrete splitting positive definite mixed finite element (MFE) methods for parabolic optimal control problems. For the space discretization, the state and co-state are approximated by the lowest order Raviart–Thomas MFE spaces and the control variable is approximated by piecewise constant functions. The time discretization of the state and co-state are based on finite difference methods. We derive the superconvergence between the projections of exact solutions and numerical solutions or the exact solutions and postprocessing numerical solutions for the control, state and co-state. A numerical example is provided to validate the theoretical results.  相似文献   

12.
We study the numerical approximation of Neumann boundary optimal control problems governed by a class of quasilinear elliptic equations. The coefficients of the main part of the operator depend on the state function, as a consequence the state equation is not monotone. We prove that strict local minima of the control problem can be approximated uniformly by local minima of discrete control problems and we also get an estimate of the rate of this convergence. One of the main issues in this study is the error analysis of the discretization of the state and adjoint state equations. Some difficulties arise due to the lack of uniqueness of solution of the discrete equations. The theoretical results are illustrated by numerical tests.  相似文献   

13.
Summary. Optimal control problems governed by the two-dimensional instationary Navier–Stokes equations and their spatial discretizations with finite elements are investigated. A concept of semi–discrete solutions to the control problem is introduced which is utilized to prove existence and uniqueness of discrete controls in neighborhoods of regular continuous solutions. Furthermore, an optimal error estimate in terms of the spatial discretization parameter is given.Correspondence to: M. Hinze  相似文献   

14.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

15.
In this paper, a piecewise constant time-stepping discontinuous Galerkin method combined with a piecewise linear finite element method is applied to solve control constrained optimal control problem governed by time fractional diffusion equation. The control variable is approximated by variational discretization approach. The discrete first-order optimality condition is derived based on the first discretize then optimize approach. We demonstrate the commutativity of discretization and optimization for the time-stepping discontinuous Galerkin discretization. Since the state variable and the adjoint state variable in general have weak singularity near t =?0and t = T, a time adaptive algorithm is developed based on step doubling technique, which can be used to guide the time mesh refinement. Numerical examples are given to illustrate the theoretical findings.  相似文献   

16.
The present article is concerned with the Neumann control of systems modeled by scalar or vector parabolic equations of reaction-advection-diffusion type with a particular emphasis on systems which are unstable if uncontrolled. To solve these problems, we use a combination of finite-difference methods for the time discretization, finite-element methods for the space discretization, and conjugate gradient algorithms for the iterative solution of the discrete control problems. We apply then the above methodology to the solution of test problems in two dimensions, including problems related to nonlinear models.  相似文献   

17.
A family of elliptic optimal control problems with pointwise constraints on control and state is considered. We are interested in approximation of the optimal solution by a finite element discretization of the involved partial differential equations. The discretization error for a problem with mixed state constraints is estimated in the semidiscrete case and in the fully discrete scheme with the convergence of order h|ln h| and h 1/2, respectively. However, considering the unregularized continuous problem and the discrete regularized version, and choosing suitable relation between the regularization parameter and the mesh size, i.e., εh 2, a convergence order arbitrary close to 1, i.e., h 1−β is obtained. Therefore, we benefit from tuning the involved parameters.  相似文献   

18.
We examine the discrete free boundaries arising from a finiteelement discretization of a variational inequality. We giveL error bounds for the Hausdorff distance of the discrete andtrue free boundary, as well as for the normals. The theoreticalresults are confirmed by numerical experiments in two and threedimensions.  相似文献   

19.
Some draining or coating fluid‐flow problems and problems concerning the flow of thin films of viscous fluid with a free surface can be described by third‐order ordinary differential equations (ODEs). In this paper, we solve the boundary value problems of such equations by sinc discretization and prove that the discrete solutions converge to the true solutions of the ODEs exponentially. The discrete solution is determined by a linear system with the coefficient matrix being a combination of Toeplitz and diagonal matrices. The system can be effectively solved by Krylov subspace iteration methods, such as GMRES, preconditioned by banded matrices. We demonstrate that the eigenvalues of the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the linear system. Numerical examples are given to illustrate the effective performance of our method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We present a computational method for solving a class of boundary-value problems in Sturm–Liouville form. The algorithms are based on global polynomial collocation methods and produce discrete representations of the eigenfunctions. Error control is performed by evaluating the eigenvalue problem residuals generated when the eigenfunctions are interpolated to a finer discretization grid; eigenfunctions that produce residuals exceeding an infinity-norm bound are discarded. Because the computational approach involves the generation of quadrature weights and arrays for discrete differentiation operations, our computational methods provide a convenient framework for solving boundary-value problems by eigenfunction expansion and other projection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号