首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fluorescence spectra of the wild-type green fluorescence protein (wt-GFP) and the anionic form of p-hydroxybenzylidenedimethylimidazolone (p-HBDI), which models the protein chromophore, were obtained in the 80-300 K temperature range in glycerol/water solvent. The protein spectra have pronounced and well-resolved vibronic structure, at least at lower temperatures. In contrast, the chromophore spectra are very broad and structureless even at the lowest temperatures. Analysis of the spectra shows that the experimentally observed red-shift of the protein spectrum upon heating is apparently caused by quadratic vibronic coupling of the torsional deformation (TD) of the phenyl single bond of the chromophore to the electronic transition. The broad spectra of the chromophore manifest the contribution of different conformations in the glycerol/water solvent. In particular, the lowest-temperature spectrum reflects the distribution over the same TD coordinate in the excited electronic state, which essentially contributes to the asymmetry of the spectrum. Upon heating, motion along this coordinate leads to a configuration from which the radiationless transition takes place. This narrows the distribution along the TD coordinate, causing a more symmetric fluorescence spectrum. We were able to reconstruct the broad, structureless fluorescence spectra of p-HBDI in glycerol/water solutions at various temperatures by convoluting the original wt-GFP spectra with the function describing the distribution of the transition energies of the p-HBDI chromophore. Thus, both the fluorescence broadening and increase in radiationless transition upon removal of the protein chromophore to bulk solvent are consistent with decay by a barrierless TD of the phenyl single bond.  相似文献   

2.
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor–acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.  相似文献   

3.
This work reveals influence of electrospinning of polyacrylonitrile–N ,N‐dimethylformamide solution of different concentrations on nanofiber web color parameters, molecular structure, and heat stability. It is found that fiber diameters depend on concentration through the power law relationship; however, the medium concentration‐based web is characterized by a green–yellow hue, representative of the chromophore color; while, the solvent‐rich and solvent‐poor solution‐based webs give rise to Stokes shifts and ultraviolet‐blue emission bands, attributed to fluorescence. The chromophore structure, present in the neat powder, undergoes changes as a result of electrospinning reflected by the enamine‐to‐ketonitrile conversion and the fraction of C?N conjugation. Blue‐shifting of the C?N conjugation is indicative of a reduction of the π‐electron system, which is coincident with the decreased color saturation value but observed only in the nanofibers prepared from the medium concentration solution. A decrease in the glass transition and an increase in cyclization temperatures also support these findings. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1278–1285  相似文献   

4.
A new two‐photon material, 3E,6E‐bis(2‐pyrid‐4′‐ylvinyl)dibenzothiophene (BPVDBT), has been firstly synthesized by an efficient Pd‐catalyzed Heck coupling route. The single‐ and two‐photon fluorescence, quantum yields, lifetimes, solvent effects of the chromophore were studied in detail and the compound exhibited solvent‐sensitivity. The fluorescence intensity (Iout) and input excitation intensity (Iin) can fit in well with the quadratic parabolas, which indicates that the up‐converted fluorescence was induced by the two‐photon absorption (TPA). TPA cross‐section of BPVDBT has been measured using the two‐photon‐induced fluorescence method, whose value is 14.24×10?50 cm4·s·photon?1·molecule?1 at 750 nm. The experimental results confirm that BPVDBT is a good two‐photon absorbing chromophore with an A‐π‐A type.  相似文献   

5.
We have developed new catechol‐based sensors that can detect fluoride via fluorescence or optical absorption even in the presence of other halides. The level and sensitivity of detection of the sensing molecules is dependent on the chromophore length, which is controlled by the number of thiophene units (one to three) within the chromophore. The sensor with three thiophene units, (E)‐2‐(2,2′‐terthiophen‐5‐yl)‐3‐(3,4‐dihydroxyphenyl)acrylonitrile, gives the best response to fluoride. By using fluorescence measurements fluoride is detectable over the concentration range 1.7 μM to 200 μM . Importantly, when adsorbed onto a solid support the fluorescent catechol dye can be used to detect the presence of fluoride in aqueous solution.  相似文献   

6.
Linear absorption spectra, resonance Raman spectra and excitation profiles, and two-photon-resonant hyper-Rayleigh and hyper-Raman scattering hyperpolarizability profiles are reported for the push-pull chromophore N,N-dipropyl-p-nitroaniline in seven solvents spanning a wide range of polarities. The absorption spectral maximum red shifts by about 2700 cm(-1), and the symmetric -NO2 stretch shifts to lower frequencies by about 11 cm(-1) from hexane to acetonitrile, indicative of significant solvent effects on both the ground and excited electronic states. The intensity patterns in the resonance Raman and hyper-Raman spectra are similar and show only a small solvent dependence except in acetonitrile, where both the Raman and hyper-Raman intensities are considerably reduced. Quantitative modeling of all four spectroscopic observables in all seven solvents reveals that the origin of this effect is an increased solvent-induced homogeneous broadening in acetonitrile. The linear absorption oscillator strength is nearly solvent-independent, and the peak resonant hyperpolarizability, beta(-2omega;omega,omega), varies by only about 15% across the wide range of solvents examined. These results suggest that the resonant two-photon absorption cross sections in this chromophore should exhibit only a weak solvent dependence.  相似文献   

7.
Three novel aza-crown ether derivatives incorporating 4-amino-7-nitrobenzaoxa-1,3-diazole (NBD) chromophore were synthesized and their structure confirmed by 1H-NMR, IR and elemental analysis. The influence of the solvent polarity and protonation on the photophysical properties of NBD-15-crown-5 was studied by UV/Vis and fluorescence methods. The influence of the investigated cations on the absorption spectra of the ligands was negligible, however emission was strongly affected. Complexation and binding stability of NBD-aza-15-crown-5 and NBD-aza-18-crown-6 were studied using fluorescence spectroscopy. NBD-aza-18-crown-6 exhibits strong selectivity toward Ca2+ and Sr2+ ions with formation constants about 103 times higher than the formation constants with the other ions included in the study.  相似文献   

8.
Starting from the conformationally unconstrained compound 3,5‐di‐(2‐bromophenoxy)‐4,4‐difluoro‐8‐(4‐methylphenyl)‐4‐bora‐3a,4a‐diaza‐s‐indacene ( 1 ), two BODIPY dyes ( 2 and 3 ) with increasingly rigid conformations were synthesized in outstanding total yields through palladium catalyzed intramolecular benzofuran formation. Restricted bond rotation of the phenoxy fragments leads to dyes 2 and 3 , which absorb and fluoresce more intensely at longer wavelengths relative to the unconstrained dye 1 . Reduction of the conformational flexibility in 2 and 3 leads to significantly higher fluorescence quantum yields compared to those of 1 . X‐ray diffraction analysis shows the progressively more extended planarity of the chromophore in line with the increasing conformational restriction in the series 1 → 2 → 3 , which explains the larger red shifts of the absorption and emission spectra. These conclusions are confirmed by quantum chemical calculations of the lowest electronic excitations in 1 , 1a , 2 , 2a , 3 and dyes of related chemical structures. The effect of the molecular structure on the visible absorption and fluorescence emission properties of 1 , 1a , 2 , 2a , 3 has been examined as a function of solvent by means of the new, generalized treatment of the solvent effect (J. Phys. Chem. B 2009 , 113, 5951–5960). Solvent polarizability is the primary factor responsible for the small solvent‐dependent shifts of the visible absorption and fluorescence emission bands of these dyes.  相似文献   

9.
In this research, we developed a novel and facile strategy to prepare aliphatic tertiary amine chromophore hyperbranched poly(amino ether ester)s with pH and thermo responsiveness via phosphazene base (t-BuP2) catalyzed oxa-Michael addition polymerization of triethanolamine with ethylene glycol diacrylate at room temperature. UV–vis and fluorescence analyses results showed that the tertiary amine at branching point for hyperbranched poly(amino ether ester)s is very important to retain strong blue fluorescence of tertiary amine chromophore. Moreover, the hyperbranched poly(amino ether ester)s exhibit an aggregation caused quenching (ACQ) fluorescence, solvent induced red-shifted emission, molecular weight, and temperature dependent emission characters. More interestingly, the hyperbranched poly(amino ether ester)s show extreme acid induced quenching fluorescence phenomenon, and also display good water solubility, specific recognition of Fe3+ ion, low cytotoxicity, and bright cell imaging, which could serve as a microenvironment-responding fluorescent probe for application in chemical sensing, cell imaging, drug delivery, or disease diagnostics. This research provides a versatile method for the preparation of stimuli-responsive aliphatic tertiary amine chromophore polymers, and supplies ideas for researchers to explore other unconventional fluorescent polymers for application.  相似文献   

10.
A vinyloxy monomer bearing electron-accepting chromophore, N-(2-(vinyloxy)ethyl)-1,8-naphthalimide (VOENI), was synthesized by reaction of potassium 1,8-naphthalimide with 2-chloroethyl vinyl ether. VOENI can be homopolymerized by cationic initiation and copolymerized with maleic anhydride (MAn) under radical initiation. The fluorescence behaviors of VOENI and its polymers were investigated. It has been found that the fluorescence intensity of the VOENI monomer is much lower than that of its polymers at the same chromophore concentration. This means that a “structural self-quenching effect” (SSQE) has been also observed in the vinyloxy monomer consisting of an electron-accepting chromophore, which has opposite electronic structure in comparison with acrylates bearing electron-donating chromophores as we have reported previously. The SSQE is attributed to the charge-transfer interaction between the electron-accepting chromophore and the electron-donating double bond in the same molecule. The fluorescence quenching of 1,8-naphthalic anhydride and P(VOENI-co-MAn) by ethyl vinyl ether (EVE), dihydrofuran, triethylamine (TEA), etc. evidences that the electron-rich vinyloxy group does act as an important role in the SSQE of VOENI. C60 can also quench the fluorescence of the polymers, and an upward deviation from the linearity of the Stern–Volmer plot was observed showing that C60 acted as a powerful electron donor to quench the fluorescence of the copolymer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1111–1116, 1998  相似文献   

11.
A novel octupolar chromophore with 1,3,5-triazine as core,2,7-divinylene-9,9-dimethylfluorene as extendedπ-conjugated bridge,triarylamine as the electron-donating end-groups was successfully synthesized and characterized.Their linear photophysical and two-photon absorption(TPA) properties were investigated by UV absorption,excited fluorescence(SPEF) spectra and nonlinear transmission method,respectively.The absorption cut-off of the chromophore is below 520 nm and it has stronger fluorescence emission in a nonpolar solvent.In addition,the chromophore exhibits larger TPA cross-section(226.0 GM) in the femtosecond regime at 800 nm.  相似文献   

12.
The sub-millisecond protonation dynamics of the chromophore in S65T mutant form of the green fluorescent protein (GFP) was tracked after a rapid pH jump following laser-induced proton release from the caged photolabile compoundo-nitrobenzaldehyde. Following a jump in pH from 8 to 5 (which is achieved within 2 μs), the fluorescence of S65T GFP decreased as a single exponential with a time constant of ∼90 μs. This decay is interpreted as the conversion of the deprotonated fluorescent GFP chromophore to a protonated non-fluorescent species. The protonation kinetics showed dependence on the bulk viscosity of the solvent, and therefore implicates bulk solvent-controlled protein dynamics in the protonation process. The protonation is proposed to be a sequential process involving two steps: (a) proton transfer from solvent to the chromophore, and (b) internal structural rearrangements to stabilize a protonated chromophore. The possible implications of these observations to protein dynamics in general is discussed  相似文献   

13.
2-(2′-Pyridyl)imidazole L1 and its corresponding boron–fluorine complex, 1, were synthesized and their crystal structures correlated with their photophysical properties. L1 forms a rigid supramolecular network through hydrogen bonds and halogen bond in the single crystal, which induces amplified spontaneous emission in crystals; it emits rather poor fluorescence in solution and powder states. Its boron chelate 1 emits intense fluorescence in solution since boron chelate is an excellent chromophore, and it exhibits large Stokes shift (136?nm in acetonitrile), due to the charge-transfer transition from the electron-donating π system to the electron-accepting boron moiety. Interestingly, 1 is also highly fluorescent in amorphous powder and crystal states; C–C rotation between pyridyl and imidazole groups is inhibited by the formation of a five-member ring containing BF2, and the formation of intermolecular non-covalent bonds is the key factor. Solid emission with large Stokes shift makes it a valuable chromophore for synthesis of functional materials.  相似文献   

14.
Six novel benzimidazole-based D-π-A compounds 4 a – 4 f were concisely synthesized by attaching different donor/acceptor units to the skeleton of 1,3-bis(1H-benzimidazol-2-yl)benzene on its 5-position through an ethynyl link. Due to the twisted conformation and effective conjugation structure, these dual-state emission (DSE) molecules show intense and multifarious photoluminescence, and their fluorescence quantum yields in solution and solid state can be up to 96.16 and 69.82 %, respectively. Especially, for excellent photostability, obvious solvatofluorochromic and extraordinary wide range of solvent compatibility, DSE molecule 4 a is a multifunctional fluorescent probe for the visual detection of nitroaromatic compounds (NACs) with the limit of detection as low as 10−7 M. The quenching mechanism has been proved as the results of photoinduced electron transfer and fluorescence resonance energy transfer processes. Importantly, probe 4 a can sensitively detect NACs not only in real water samples, but also on 4 a -coated strips and 4 a @PBAT thin films.  相似文献   

15.
《化学:亚洲杂志》2017,12(14):1736-1748
Five centrosymmetric and one dipolar pyrrolo[3,2‐b ]pyrroles, possessing either two or one strongly electron‐withdrawing nitro group have been synthesized in a straightforward manner from simple building blocks. For the symmetric compounds, the nitroaryl groups induced spontaneous breaking of inversion symmetry in the excited state, thereby leading to large solvatofluorochromism. To study the origin of this effect, the series employed peripheral structural motifs that control the degree of conjugation via altering of dihedral angle between the 4‐nitrophenyl moiety and the electron‐rich core. We observed that for compounds with a larger dihedral angle, the fluorescence quantum yield decreased quickly when exposed to even moderately polar solvents. Reducing the dihedral angle (i.e., placing the nitrobenzene moiety in the same plane as the rest of the molecule) moderated the dependence on solvent polarity so that the dye exhibited significant emission, even in THF. To investigate at what stage the symmetry breaking occurs, we measured two‐photon absorption (2PA) spectra and 2PA cross‐sections (σ2PA) for all six compounds. The 2PA transition profile of the dipolar pyrrolo[3,2‐b ]pyrrole, followed the corresponding one‐photon absorption (1PA) spectrum, which provided an estimate of the change of the permanent electric dipole upon transition, ≈18 D. The nominally symmetric compounds displayed an allowed 2PA transition in the wavelength range of 700–900 nm. The expansion via a triple bond resulted in the largest peak value, σ2PA=770 GM, whereas altering the dihedral angle had no effect other than reducing the peak value two‐ or even three‐fold. In the S 0S 1 transition region, the symmetric structures also showed a partial overlap between 2PA and 1PA transitions in the long‐wavelength wing of the band, from which a tentative, relatively small dipole moment change, 2–7 D, was deduced, thus suggesting that some small symmetry breaking may be possible in the ground state, even before major symmetry breaking occurs in the excited state.  相似文献   

16.
Abstract— Monomer, trimer and hexamer states of C. Phycocyanin chromophore protein have been isolated. Owing to a very slow approach to equilibrium mixing, it has been possible to estimate the number of each type of the two chromophores ‘s’; and ‘f’ present, using a fluoros-cence polorization method. It is found that there is one s chromophore and one f chromophore per protein monomer of molecular weight 30,000, a value in agreement with the monomer mol. wt. determined by Berns et al and by thermodynamic measurements in this laboratory. Absorption and fluorescence spectra of hexamer and monomer solutions have been compared. The hexamer solution shows greater fluorescence than the monomer solution, a phenomenon that may be attributable to a change in environment of chromophore following polymerization, with consequent change of fluorescence yield of each chromophore type and/or variation in energy transfer between them.  相似文献   

17.
Effects of self-coiling of organic molecules on intramolecular exciplex formation of compound I,in which the carbazole chromophore and terephthalic acid methylester acceptor group are linked by one (CH2)10 chain,and the decrease of the fluorescence intensities of compounds Ⅱ,Ⅲ,and Ⅳ,in which the carbazole chromophore and 3,5-dinitrobenzoate are connected by one aliphatic chain of (CH2)10 (Ⅱ),(CH2)12(Ⅲ),or (CH2)4(Ⅳ),have been studied in the dioxane (DX)-H2O binary system.The results show that self-coiling of organic molecules in DX-H2O facilitates intramolecular exciplex formation of I and induces the decrease of fluorescence intensities of Ⅱ,bacause of the proximity effect brought about by selfcoiling of organic molecules under hydrophobic-lipophilic interaction(HLI) between the excited carbazole chromophore and the acceptor.Since the similar effects are observed even when the concentration of the probes are less than their CAgCs(critical aggregate concentrations )in the DX-H2O mixture with the same φ values,formation of the intermolecular exciplex has been excluded.The effects are found to be strongly depended on φ values,indication that they are mainly driven by HLI.The properties of the acceptors can also affect the intramolecular exciplex formation.With terephthalic acid methylester moiety as the acceptor,the carbazole chromophore exhibits the fluorescence spectra of the exciplex,while with 3,5-dinitrobenzoate moiety as the acceptor,only the fluorescence spectra of excited carbazolyl chromophore are observed.  相似文献   

18.
The absorption and fluorescence emission of pyridoxamine were studied as function of pH and solvent properties. In the ground state, pyridoxamine exhibits different protonated forms in the range of pH 1.5–12. Fluorescence studies showed that the same species exist at the lowest singlet excited state but at different pH ranges. The phenol group is by ca. 8 units more acidic in the excited state than in the ground state. On the other hand, the pyridine N‐atom is slightly more basic in the lowest excited state than in the ground state. Excitation spectra and emission decays in the pH range of 8–10 indicate the protonation of the pyridine N‐atom by proton transfer from the amine group, in the ground and singlet excited states. Spectroscopic studies in different solvents showed that pyridoxamine in the ground or excited states exhibits intramolecular proton transfer from the pyridine N‐atom to the phenol group, which is more favorable in solvents of low hydrogen‐bonding capacity. The cationic form with the protonated phenolic group, which emits at shorter wavelength, is the dominant species in nonprotic solvents, but, in strong proton‐donor solvents, both forms exist. The fluorescence spectra of these species exhibit blue shift in protic solvents. These shifts are well‐correlated with the polarity and the H‐donor ability of the solvent.  相似文献   

19.
Absorption spectra and fluorescence spectra are essential for use across the photosciences, yet such spectra along with the all‐important values for molar absorption coefficient (ε) and fluorescence quantum yield (Φf) often are found with great difficulty. Here, a literature survey concerning the vital class of chlorophyll compounds has led to identification of spectra for 150 members. Spectra in print form have been digitized (with baseline corrections) and assembled into a database along with literature references, solvent identity and values for ε and Φf (where available). The database encompasses photosynthetic tetrapyrroles wherein the chromophore is a porphyrin (e.g. chlorophyll c1, protochlorophyll a), chlorin (e.g. chlorophyll a, bacteriochlorophyll c) or bacteriochlorin (e.g. bacteriochlorophyll a). Altogether, the database contains 305 absorption spectra (from 19 porphyrins, 109 chlorins and 22 bacteriochlorins) and 72 fluorescence spectra (from 10 porphyrins, 30 chlorins and 4 bacteriochlorins). The spectral database should facilitate comparisons and quantitative calculations. All spectra are available in print form in the Supporting Information. The entire database in digital form is available with the PhotochemCAD program for free downloading and further use at http://www.photochemcad.com .  相似文献   

20.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号