首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Solvated electrons have been produced in ethylene glycol by two-photon ionization of the solvent with 263 nm femtosecond laser pulses. The two-photon absorption coefficient of ethylene glycol at 263 nm is determined to be beta = (2.1 +/- 0.2) x 10(-11) m W(-1). The dynamics of electron solvation in ethylene glycol has been studied by pump-probe transient absorption spectroscopy. So, time-resolved absorption spectra ranging from 430 to 710 nm have been measured. A blue shift of the spectra is observed for the first tens of picoseconds. Using the Bayesian data analysis method, the observed solvation dynamics are reconstructed with different models: stepwise mechanisms, continuous relaxation models, or combinations of stepwise and continuous relaxation. Comparison between models is in favor of continuous relaxation, which is mainly governed by solvent molecular motions.  相似文献   

2.
Electronic structure calculations, steady-state electronic spectroscopy, and femtosecond time-resolved emission spectroscopy are used to examine the photophysics of trans-4-(dimethylamino)-4'-cyanostilbene (DCS) and its solvent dependence. Semiempirical AM1/CI calculations suggest that an anilino TICT state is a potential candidate for the emissive state of DCS in polar solvents. But observation of large and solvent-independent absorption and emission transition moments in a number of solvents (M(abs) = 6.7 +/- 0.4 D and M(em) = 7.6 +/- 0.8 D) rule out the involvement of any such state, which would have a vanishingly small transition moment. The absorption and steady-state emission spectra of DCS evolve in a systematic manner with solvent polarity, approximately as would be expected for a single, highly polar excited state. Attempts to fit the solvatochromism of DCS using standard dielectric continuum models are only partially successful when values of the solute dipole moments suggested by independent measurements are assumed. The shapes of the absorption and emission spectra of DCS change systematically with solvent polarity in a manner that is semiquantitatively reproduced using a coupled-state model of the spectroscopy. Kerr-gate emission measurements show that the emission dynamics of DCS down to subpicosecond times reflect only solvent relaxation, rather than any more complicated electronic state kinetics. The spectral response functions measured with DCS are well correlated to those previously reported for the solvation probe coumarin 153, indicating DCS to be a useful alternative probe of solvation dynamics.  相似文献   

3.
Many recent experimental studies have reported a surprising ultraslow component (even >10 ns) in the solvation dynamics of a polar probe in an organized assembly, the origin of which is not understood at present. Here we propose two molecular mechanisms in explanation. The first one involves the motion of the ‘buried water’ molecules (both translation and rotation), accompanied by cooperative relaxation (‘local melting’) of several surfactant chains. An estimate of the time is obtained by using an effective Rouse chain model of chain dynamics, coupled with a mean first passage time calculation. The second explanation invokes self-diffusion of the (di)polar probe itself from a less polar to a more polar region. This may also involve cooperative motion of the surfactant chains in the hydrophobic core, if the probe has a sizeable distribution inside the core prior to excitation, or escape of the probe to the bulk from the surface of the self-assembly. The second mechanism should result in the narrowing of the full width of the emission spectrum with time, which has indeed been observed in recent experiments. It is argued that both the mechanisms may give rise to an ultraslow time constant and may be applicable to different experimental situations. The effectiveness of solvation as a dynamical probe in such complex systems has been discussed.  相似文献   

4.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

5.
We present a short review of recent computational and experimental studies on surfaces of solutions of inorganic salts in polar nonaqueous solvents. These investigations complement our knowledge of aqueous interfaces and show that liquids such as formamide, liquid ammonia, and ethylene glycol can also surface-segregate large polarizable anions like iodide, albeit less efficiently than water. For liquids whose surfaces are covered with hydrophobic groups (e.g. methanol), the surface-ion effect all but disappears. Based on the present data a general picture of inorganic-ion solvation at the solution-vapor interface of polar liquids is outlined.  相似文献   

6.
7.
Solvation dynamics in four imidazolium cation based room temperature ionic liquids (RTIL) have been calculated by using the recently measured dielectric relaxation data [ J. Phys. Chem. B 2008, 112, 4854 ] as an input in a molecular hydrodynamic theory developed earlier for studying solvation energy relaxation in polar solvents. Coumarin 153 (C153), 4-aminophthalimide (4-AP), and trans-4-dimethylamino-4'-cyanostilbene (DCS) have been used as probe molecules for this purpose. The medium response to a laser-excited probe molecule in an ionic liquid is approximated by that in an effective dipolar medium. The calculated decays of the solvent response function for these RTILs have been found to be biphasic and the decay time constants agree well with the available experimental and computer simulation results. Also, no probe dependence has been found for the average solvation times in these ionic liquids. In addition, dipolar solvation dynamics have been predicted for two other RTILs for which experimental results are not available yet. These predictions should be tested against experiments and/or simulation studies.  相似文献   

8.
The dynamics of solvent relaxation in ionic liquid (IL)-water, IL-methanol, and IL-acetonitrile mixtures have been investigated using steady state and picosecond time-resolved fluorescence spectroscopy. We have used Coumarin 153 (C-153) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF(6)]) as fluorescence probe and IL, respectively. The steady-state emission spectra showed that the gradual addition of cosolvents increases the polarity of the mixtures. In neat [hmim][PF(6)] and all IL-cosolvent mixtures, solvation occurs in two well-separated time regimes within the time resolution of our instrument. A substantial portion of the solvation has been missed due to the limited time resolution of our instrument. The gradual addition of cosolvents decreases the viscosity of the medium and consequently solvation time also decreases. The decrease in solvation time is more pronounced on addition of acetonitrile compared to water and methanol. The rotational relaxation time of the probe is also decreasing with gradual addition of the cosolvents. The decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule.  相似文献   

9.
利用稳态线性红外光谱和飞秒泵浦-探测红外光谱技术, 研究了在乙腈(MeCN)、丙酮(AC)、四氢呋喃(THF)和二甲基亚砜(DMSO)溶剂中乙二醇(EG)的结构和羟基(―OH)伸缩振动动力学. 结果表明, 乙二醇的―OH伸缩振动的频率位置、峰宽以及振动弛豫动力学都表现出强烈的溶剂依赖性. 乙二醇溶液中至少存在两种形式的分子间氢键, 一种是溶质-溶剂团簇的分子间氢键, 另一种是溶质-溶质团簇的分子间氢键. 量子化学计算预测的―OH伸缩振动频率的溶剂依赖性与我们的红外光谱实验观测结果一致. 进一步, 我们发现在乙腈中参与形成溶质-溶剂团簇氢键的乙二醇―OH伸缩振动具有最慢的弛豫动力学, 丙酮和四氢呋喃次之, 而最快的弛豫动力学过程发生在二甲基亚砜中. 在每一溶剂条件下, 乙二醇/乙二醇溶质团簇中―OH伸缩振动弛豫都更快一些. 本文结果有助于认识在溶质-溶质、溶质-溶剂分子团簇共存的体系中不同分子间氢键的结构动力学特性.  相似文献   

10.
We investigate with femtosecond mid-infrared spectroscopy the vibrational-mode characteristics of the electronic states involved in the excited-state dynamics of pyranine (HPTS) that ultimately lead to efficient proton (deuteron) transfer in H2O (D2O). We also study the methoxy derivative of pyranine (MPTS), which is similar in electronic structure but does not have the photoacidity property. We compare the observed vibrational band patterns of MPTS and HPTS after electronic excitation in the solvents: deuterated dimethylsulfoxide, deuterated methanol and H2O/D2O, from which we conclude that for MPTS and HPTS photoacids the first excited singlet state appears to have charge-transfer (CT) properties in water within our time resolution (150 fs), whereas in aprotic dimethylsulfoxide the photoacid appears to be in a non-polar electronic excited state, and in methanol (less polar and less acidic than water) the behaviour is intermediate between these two extremes. For the fingerprint vibrations we do not observe dynamics on a time scale of a few picoseconds, and with our results obtained on the O-H stretching vibration we argue that the dynamic behaviour observed in previous UV/Vis pump-probe studies is likely to be related to solvation dynamics.  相似文献   

11.
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations (XACN≈0.2), thus indicating the onset of nonideality within the mixture that continues until XACN≈0.8. This nonideality regime (XACN≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations (XACN≈0.8–1), the ACN–H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H2O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.  相似文献   

12.
The behavior of acridine orange base (AOB) in nonaqueous reverse micelles composed of n-heptane/AOT/polar solvent has been performed. Ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA) were employed as water substitutes. The studies were performed by static and time-resolved emission spectroscopy. Thus, the distribution of AOB between the two pseudophases of the aggregates was quantified by measuring the partition constants from emission spectra at different surfactant concentration. Similar values to those obtained by means of absorption spectroscopy were obtained. This match is indicating that AOB is not experiencing partition during the lifetime of the excited state. Partitioning to the micelles is strongly favored in micelles containing hydrogen-bond donor (HBD) solvents rather than non-HBD solvents. Variations of fluorescence lifetimes with AOT concentration confirm these results. By the solvatochromic behavior of AOB in the different systems it is shown that the microenvironment at the interface is distinct from that of the bulk polar solvent, indicating that the probe senses no "free" solvent. The steady state anisotropy (r) was measured for EG/AOT/n-heptane and DMF/AOT/n-heptane systems as representatives for HBD and non-HBD polar solvents, respectively. The value of r is higher in the micelles containing EG than that obtained with DMF, and increases with AOT concentration. This is explained as due to highly structured polar solvents in the inner core. EG is interacting with the polar heads of AOT through hydrogen-bond interaction, while DMF can only interact with the Na+ counterions. This is confirmed by the time-resolved emission spectra (TRES) of the probe in the micellar systems, in comparison with the bulk solvents.  相似文献   

13.
The treatment of the solvation charges using Gaussian functions in the polarizable continuum model results in a smooth potential energy surface. These charges are placed on top of the surface of the solute cavity. In this article, we study the effect of the solute cavity (van der Waals-type or solvent-excluded surface-type) using the Gaussian charge scheme within the framework of the conductor-like polarizable continuum model on (a) the accuracy and computational cost of the self-consistent field (SCF) energy and its gradient and on (b) the calculation of free energies of solvation. For that purpose, we have considered a large set of systems ranging from few atoms to more than 200 atoms in different solvents. Our results at the DFT level using the B3LYP functional and the def2-TZVP basis set show that the choice of the solute cavity does neither affect the accuracy nor the cost of calculations for small systems (< 100 atoms). For larger systems, the use of a vdW-type cavity is recommended, as it prevents small oscillations in the gradient (present when using a SES-type cavity), which affect the convergence of the SCF energy gradient. Regarding the free energies of solvation, we consider a solvent-dependent probe sphere to construct the solvent-accessible surface area required to calculate the nonelectrostatic contribution to the free energy of solvation. For this part, our results for a large set of organic molecules in different solvents agree with available experimental data with an accuracy lower than 1 kcal/mol for both polar and nonpolar solvents.  相似文献   

14.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

15.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

16.
The aggregation behaviour of Tween 20 in ethylene glycol-water mixed solvents has been investigated using surface tension, density, static and dynamic light scattering, and fluorescence measurements. Micellar and surface thermodynamics data were obtained from the temperature dependence of critical micelle concentrations in various aqueous mixtures of ethylene glycol. In order to evaluate the influence of the cosolvent, the differences in the Gibbs energies of micellization of Tween 20 between water and binary solvents were determined. This study allowed us to conclude that the ability of ethylene glycol to act as a structure breaker and its interaction with the surfactant hydrophilic group are the controlling factors of the micellization process. From the evaluation of the thermodynamics of adsorption at the solution-air interface, it was determined that the surface activity of the surfactant decreases slightly with increasing concentration of ethylene glycol at a given temperature. Partial specific volume data, obtained by density measurements, indicate that the fraction of solvent molecules interacting with the micelle, via hydrogen bonds, remained roughly constant. The effect of cosolvent on the size and solvation of the aggregates was analysed by means of static and dynamic light scattering measurements. It was found that the aggregation number decreased, whereas the whole micellar solvation increased with the ethylene glycol content. Micellar micropolarity was examined using two different probes, pyrene and 8-anilinonaphthelene-1-sulfonic acid, and was found to increase with ethylene glycol addition, accompanied by an enhanced solvation. Fluorescence polarization measurements found by using coumarin 6 as a hydrophobic probe revealed an increase in the micellar microviscosity. The observed trends in these microenvironmental properties were ascribed to a participation by ethylene glycol in the micellar solvation layer.  相似文献   

17.
The solubility of lamotrigine (LTG), clonazepam (CZP) and diazepam (DZP) in some {cosolvent (1) + water (2)} mixtures expressed in mole fraction at 298.15 K was calculated from reported solubility values expressed in molarity by using the densities of the saturated solutions. Aqueous binary mixtures of ethanol, propylene glycol and N-methyl-2-pyrrolidone were considered. From mole fraction solubilities and some thermodynamic properties of the solvent mixtures, the preferential solvation of these drugs by both solvents in the mixtures was analysed by using the inverse Kirkwood–Buff integrals. It is observed that LTG, CZP and DZP are preferentially solvated by water in water-rich mixtures in all the three binary systems analysed. In {ethanol (1) + water (2)} mixtures, preferential solvation by water is also observed in ethanol-rich mixtures. Nevertheless, in {propylene glycol (1) + water (2)} and {N-methyl-2-pyrrolidone (1) + water (2)} mixtures preferential solvation by the cosolvent was observed in cosolvent-rich mixtures.  相似文献   

18.
In order to explain the discrepancies between theories and experiments regarding the non-ideality in the free energy of solvation, here we present a microscopic picture of sodium ions dissolved in water-alcohol mixed solvents. We used X-ray absorption spectroscopy to probe the K-edge of sodium ions in mixed solvents of water and alcohols (methanol, ethanol) and in the respective pure solvents. In the mixed solvents a shared solvation of the sodium ions is observed. We find that specifically the water component plays a key role in stabilizing the solvation shell in mixed solvents, which was revealed by a selective photochemical process occurring only in the pure alcohol solvents.  相似文献   

19.
Rate constants for intramolecular electron transfer within the intervalence charge transfer (-1) states of the complexes [{Ru3O(OAc)6(L)(CO)}2(mu-pz)] (where L= 4-(dimethylamino)pyridine (1), pyridine (2), 3-cyanopyridine (3), or 4-cyanopyridine (4) and pz = pyrazine) were determined by coalescence of infrared (IR) vibrational spectral line shapes in seven solvents. The electron-transfer times (kET-1) show a strong correlation with solvent relaxation times determined in separate ultrafast time-resolved fluorescence experiments. The best comparison is found with the parameter t1e, which is ascribed to inertial solvent relaxation. The IR spectra of these mixed-valence complexes are thus a steady-state spectral probe of ultrafast, dynamic solvent relaxation processes which are otherwise only accessible using laser-pumped, ultrafast time-resolved measurements.  相似文献   

20.
Binary mixtures comprising cetylpyridinium chloride and non-aqueous solvents of varying polarity [ethylene glycol (ε ~ 37.2) and formamide (ε ~ 109)] were studied via X-ray diffraction, polarisation optical microscopy, differential scanning calorimetry and dielectric spectroscopy. Layered lamellar mesophase was observed in both mixtures. Formamide-based mesophase was found more ordered and stable up to higher temperature (140°C). Ordering and stability of the mesophase was explained considering the higher polarity and dipolar–dipolar interactions of formamide. Dielectric spectroscopy demonstrates the large magnitudes of capacitance and permittivity (Cp ≈ 9 µF and ε ≈ 2428) for mesophase derived from formamide. Dynamical relaxation parameters of both mixtures were discussed and correlated with their structural aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号