首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of glycerol on both micellar formation and the structural evolution of the sodium dodecyl sulfate (SDS) aggregates in the context of the action mechanism of the cosolvent has been studied. The critical micelle concentration and the degree of counterion dissociation of the surfactant over a temperature range from 20°C to 40°C were obtained by the conductance method. The thermodynamic parameters of micellization were estimated by using the equilibrium model of micelle formation. The analysis of these parameters indicated that the lower aggregation of the surfactant is mainly due to a minor cohesive energy of the mixed solvent system in relation to the pure water. The effect of glycerol on the mean aggregation number of the micelles of SDS was analyzed by the static quenching method. It was found that the aggregation number decreased with the glycerol content. This reduction in the micellar size seems to be controlled by an increase in the surface area per headgroup, which was ascribed to a participation of glycerol in the micellar solvation layer. Studies on the micropolarity of the aggregates, as sensed by the probe pyrene, indicated that this microenvironmental parameter is almost unaffected by the presence of glycerol in the mixture. However, an increase in the micellar microviscosity at the surface region was observed from the photophysical behavior of two different probes, rhodamine B and auramine O. These results suggest a certain interaction of the cosolvent in the micellar solvation of SDS micelles.  相似文献   

2.
The aggregation behavior of cetylpyridinium chloride (CPyCl) in N,N-dimethylformamide (DMF)-water mixed solvents was investigated using electrical conductivity and spectroscopic techniques. Micellar and thermodynamic parameters (DeltaG(m)(0), DeltaH(m)(0), DeltaS(m)(0) and Delta(m)C(p)(0)) were obtained from the temperature dependence of critical micelle concentrations in various aqueous mixtures of DMF. The differences in the Gibbs energies of micellization of CPyCl between water and binary solvents were determined to evaluate the influence of the cosolvent. The effect of cosolvent on the Krafft temperature (K(T)) and on the aggregation number was also analyzed. Micellar micropolarity was examined spectrophotometrically using two different probes, methyl orange (MO) and methylene blue (MB), and was found to increase with DMF addition, accompanied by an enhanced solvation. The mechanism of docking of surfactant and the probe molecules in the system were obtained by using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

3.
The effect of formamide on the micellization of tetradecyltrimethylammonium bromide has been investigated by conductance and fluorescence probe experiments. The critical micelle concentration and the degree of counterion dissociation of micelles were obtained from conductance measurements in the temperature range of 20 to 40 degrees C. It was found that these two parameters increase with both temperature and formamide content in the solvent system. The thermodynamic parameters of micellization were estimated using the equilibrium model of micelle formation. The standard free energy of micellization was found to be negative in all cases and becomes less negative as the formamide content in the mixed solvent increases, but it is roughly independent of temperature. Although the entropic contribution was found to be larger than the enthalpy one, in particular at lower temperatures, an enthalpy-entropy compensation effect was observed for all systems. Micellar aggregation numbers were determined by the static quenching method, using pyrene as a probe and cetylpyridinium chloride as a quencher. The observed decrease in the micelle aggregation number, which is controlled by the increase in the surface area per headgroup, was attributed to an enhanced solvation in formamide rich solvent mixtures. Changes in the pyrene 1:3 ratio index, indicating a more polar environment, are consistent with an increased micellar solvation. Fluorescence polarization of both coumarin 6 and fluorescein are indicative of a decrease in microviscosity with cosolvent addition. The data on fluorescence anisotropy of coumarin 6 were analyzed using the wobbling in cone model. Data indicated the formation of micelles with a less ordered structure as the formamide increases in the solvent system.  相似文献   

4.
Micellar properties of dodecylpyridinium chloride (DPC) were investigated by means of electrical conductometry with emphasis on the influences of cosolvent-water content and temperature. Ethanol was used as a cosolvent. Conductivity measurements gave information about critical micelle concentration and micellar ionization degree of the water-ethanol micellar solutions at different temperatures. In all solvent mixtures, it was observed that the critical micelle concentration of DPC and the degree of the counterion dissociation increase with an increasing concentration of ethanol and increasing temperature. Micellar and thermodynamics data were obtained from the temperature dependence of critical micelle concentrations in various aqueous mixtures of ethanol. In order to explain the effect of the cosolvent, the differences in the Gibbs energies of micellization of DPC between water and binary cosolvent were determined. The standard free energy (ΔG°mic) of micellization was found to be negative as the concentration of the solvent increases, but it is roughly independent of temperature. Although the enthalpic contribution was found to be larger than the entropic one, in particular at lower temperatures, an entropy-enthalpy compensation effect was observed for all systems. Also, enthalpy (ΔH°mic) and entropy (ΔS°mic) of micellization are strongly temperature dependent and decrease with increasing temperature and cosolvent content. The text was submitted by the authors in English.  相似文献   

5.
The aggregation behaviour of tetradecyltrimethylammonium bromide in ethylene glycol–water mixtures across a range of temperatures has been investigated by electrical conductivity measurements. The critical micelle concentration (cmc) and the degree of counterion dissociation of micelles were obtained at each temperature from plots of differential conductivity, (κ/c) T , P , versus the square root of the total concentration of the surfactant. This procedure not only enables us to determine the cmc values more precisely than the conventional method, based on plots of conductivity against total concentration of surfactant, but also allows straightforward determination of the limiting molar conductance and the molar conductance of micellar species. The equilibrium model of micelle formation was applied to obtain the thermodynamics parameters of micellization. Only small differences have been observed in the standard molar Gibbs free energies of micellization over the temperature range investigated. The enthalpy of micellization was found to be negative in all cases, and it showed a strong dependence on temperature in the ethylene glycol poor solvent system. An enthalpy–entropy compensation effect was observed for all the systems, but whereas the micellization of the surfactant in the solvent system with 20 wt% ethylene glycol seems to occur under the same structural conditions as in pure water, in ethylene glycol rich mixtures the results suggest that the lower aggregation of the surfactant is due to the minor cohesive energy of the solvent system in relation to water. Received: 13 December 1998 Accepted in revised form: 25 February 1999  相似文献   

6.
Micellar behavior of binary combinations of ionic liquid, 1-tetradecyl-3-methylimidazolium bromide, with conventional cationic surfactant 1-hexadecylpyridinium bromide was investigated by means of conductometry to study the effect of cosolvent and water content and temperature. The critical micelle concentration and the degree of counterion association were calculated from the conductometry data. Thermodynamic parameters were obtained from the temperature dependence of the critical micelle concentration. The standard Gibbs energy of micellization increased with the increasing percentage of cosolvent as well as the mole fraction of C14mimBr. The standard enthalpy and standard entropy of micelle formation were both decreased with the increasing temperature and the concentration of cosolvent. The entropy contribution was larger than the enthalpic one in pure water, whereas in the ethylene glycol/H2O mixture the enthalpy contribution was predominant  相似文献   

7.
In this paper, we have studied the effect of glycerol on the micelle formation of tetradecyltrimethylammonium bromide. Changes in both the critical micelle concentration and the degree of counterion binding of the surfactant upon the addition of glycerol across a temperature range (20-40 degrees C) were examined by using the conductance method. The equilibrium model of micelle formation was applied to obtain the thermodynamic parameters of micellization. An enthalpy-entropy compensation effect was observed in all the solvent systems, but whereas the micellization of the surfactant in the medium with 20% glycerol occurs under the same structural conditions as in pure water, in glycerol rich mixtures the results suggest that the lower aggregation in these media is due to the minor cohesive energy of the solvent system in relation to water. It was also observed that the micellar aggregation number, as obtained by the static quenching method, decreases with the glycerol content. This fact was attributed to an increase in the surface area per headgroup of the surfactant as a consequence of an enhanced solvation, probably induced by the incorporation of some glycerol molecules in the micellar solvation layer. Although the pyrene 1:3 ratio index does not indicate significant changes in the micropolarity at the micelle-bulk interface, the data of fluorescence anisotropy of coumarin 6 and fluorescein are compatible with the formation of a more compact solvation layer.  相似文献   

8.
The aggregation behavior and interaction of an amphiphilic antidepressant drug imipramine (IMP) hydrochloride with the cationic surfactant cetyltrimethylammonium bromide (CTAB) have been studied using light scattering (both static and dynamic) techniques. Due to rigid tricyclic hydrophobic moiety present in the molecule, the drug shows interesting association behavior. The static light scattering measurements show that the self-association of IMP commenced above a well-defined critical micellar concentration (CMC), which decreases with increasing the mole fraction of the CTAB surfactant. Both the excess Gibbs energy (ΔG(ex)) and the Gibbs energy of micellization (ΔG(M)°) are negative, and decrease with increasing mole fraction of the surfactant. The hydrodynamic diameters (d(h)) of the micellar aggregates were also evaluated using the dynamic light scattering measurements. The data indicate formation of larger aggregates by IMP and CTAB due to mixed micellization and subsequent micellar growth. The results have been analyzed using different models (viz., Clint, Motomura, Rosen, Rubingh, etc.) for mixed micelle formation.  相似文献   

9.
This paper deals with the effect of ethylene glycol on the micelle formation of tetradecyltrimethylammonium bromide. The effect of ethylene glycol addition on the fluorescence anisotropy of several probe molecules residing in different regions of the micelle was investigated to address the solvent penetration in the micelle structure. Fluorescence depolarization measurements were carried out on micellar systems containing two different hydrophobic dyes, namely, perylene and diphenylbutadiene, and a hydrophilic one, fluorescein. The steady-state anisotropy values obtained in these experiments were used to estimate the microviscosity of the corresponding micellar regions. It is observed that the microviscosity in the hydrophobic regions of micelles were roughly constant with EG addition, indicating that the micellar interior does not undergo significant structural changes by the presence of cosolvent in the solution. However, the microviscosity at the micellar surface, as determined by using fluorescein as a probe, is found to increase with EG addition. This perturbation of the micellar surface is ascribed to the solvent penetration in this region of the micelle, where there is probably participation in the solvation layer of the micelle headgroups. Copyright 2000 Academic Press.  相似文献   

10.
The micellization and micellar growth of cationic dimeric surfactant propanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide, 12-3-12,2Br-, have been studied in several water-organic solvent mixtures. The organic solvents were ethylene glycol, glycerol, 1,2-propylene glycol, 1,3-propylene glycol, acetonitrile, dioxane, formamide, and N,N-dimethylformamide. Results showed that the aggregation process was less favored in the binary mixtures than in pure water, which was explained by considering the influence of the solvophobic effect on micellization. The addition of organic solvents was accompanied by a diminution in the average aggregation number, Nagg, of the dimeric micelles. This diminution was due to the decrease in the interfacial Gibbs energy contribution, Delta G0interfacial, to the Gibbs energy of micellization caused by the decrease in the hydrocarbon/bulk-phase interfacial tension. As a result of the micelle size diminution, the concentration at which the sphere-to-rod transition occurred, C*, was higher in the mixtures than in pure water. Micelle size reduction is accompanied by a decrease in the ionic interactions and in the extra packing contribution to the deformation of the surfactants tails, making the formation of cylindrical micelles less favorable.  相似文献   

11.
This report investigates the effect of sodium chloride (NaCl) on the micellization, surface activity, and the evolution in the shape and size of n-octyl beta-D-thioglucopyranoside (OTG) aggregates. By using surface tension measurements, information was obtained on both changes in the critical micelle concentration and adsorption behavior in the air-liquid interface with the electrolyte concentration. These data were used to obtain the thermodynamic properties of micellization along with the corresponding adsorption parameters in the air-liquid interface. From extended static and dynamic light scattering measurements, the micelle molecular weight, the mean aggregation number, and the second virial coefficient, the apparent diffusion coefficient and the mean hydrodynamic radius of micelles in a range of NaCl concentrations were obtained. The light scattering data have shown that when the surfactant concentration is lower to 4.5 g/L, only spherical micelles are formed. However, an increase in the surfactant concentration induces an increase in micellar size, suggesting a rodlike growth of the micelles. This deviation of micelle geometry from spherical to rodlike is supported both by the ratio between the hydrodynamic radius and the radius of gyration and by the angular dependence of light scattering. On the other hand, the studies performed in the presence of high NaCl concentration (0.2 and 0.5 M) provide strong support for the view that the micelles may overlap together to form an entangled network above certain crossover concentration.  相似文献   

12.
The interaction of nonionic diblock copolymer poly(ethylene oxide butylene oxide) (E62B22) with a cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulphate (SDS) were studied using surface tension, conductivity, and dynamic laser light scattering techniques. Surface tension measurements were used to determine critical micelle concentration and thereby its free energy of adsorption (ΔGads), free energy of micellization (ΔGm), surface excess concentration (Γ), and minimum area per molecule (A). Conductivity measurements were used to determine critical micelle concentration (CMC) critical aggregation concentration (CAC) at different temperatures, enthalpy of micellization (ΔHm), free energy of micellization and entropy of micellization (ΔSm). Changes in physicochemical properties of the micellized block copolymer were studied by using dynamic laser light scattering. The effect of surfactant on the size and properties of block copolymer has also been discussed.  相似文献   

13.
利用表面张力法, 研究了非离子表面活性剂Triton X-100和离子表面活性剂十六烷基三甲基溴化铵(CTAB)混合体系在混合极性溶剂乙二醇/水(乙二醇的体积分数分别为5%、10%和20%)中的热力学性质和胶团化行为. 结果表明, 混合体系在乙二醇水溶液中存在协同效应, 临界胶束浓度随乙二醇含量的增加而增大. 利用Rubingh和Maeda模型计算了混合物中各组分在胶团相中的组成、相互作用参数以及自由能的贡献. 在实验研究的乙二醇浓度范围内, 发现该非离子/离子混合体系在离子组分摩尔分数约为0.3时, 协同效应最强.  相似文献   

14.
Abstract

Micellar properties of the binary surfactant mixtures of cetylpyridinium chloride (CPC) and polyoxyethylene (20) sorbitan monostearate (Tween‐60) have been investigated in detail using tensiometric, conductometric, spectrophotometric, and fluorimetric techniques. The critical micelle concentration (CMC), counterion binding, interfacial adsorption, energetics of micellization, and micellar dielectric constant have been evaluated. The theories of Clint, Motomura, Rubingh, and Sarmoria, Puvvada and Blankschtein have been followed to understand the CMC, composition, activity coefficients, and synergism of the binary surfactant systems.  相似文献   

15.
Light scattering measurements have been performed on aqueous solutions of undecylammonium chloride in the presence of 0 to 0.2 mol dm(-3) NaCl and 0 to 0.5 mol dm(-3) n-butanol at 25 degrees C. The critical micelle concentration (CMC), aggregation number, and degree of dissociation of the micelles have been determined. The observed decrease of the CMC with the increase of the n-butanol concentration was explained by the effect of the n-butanol on water structure and by the selective solvation of the micelles with n-butanol, which counteract the decrease of the polar character of the solvent caused by n-butanol addition. An observed increase in the degree of dissociation of the micelles and a decrease in the aggregation number following alcohol addition have been explained by considering the effect of this additive on the electrostatic and other interactions involved in free energy of micellization. Our results support the concept of opposing effects between n-butanol and NaCl on the cooperativity in the micellization process of this surfactant, with the n-butanol disfavoring micellar growth. Copyright 2000 Academic Press.  相似文献   

16.
Conductivity and static fluorescence measurements have been carried out at 25 degrees C to study the monomeric and micellar phases of aqueous solutions of mixed micelles constituted by a conventional cationic surfactant, dodecyltrimethylammonium bromide (D(12)TAB), and a tricyclic antidepressant drug, amitriptyline hydrochloride (AMYTP), with aggregation properties. From conductivity data, the total mixed critical micelle concentration and the dissociation degree of the mixed micelle have been obtained, while fluorescence experiments allow for the determination of the total aggregation number, and the micropolarity of micellar inside. Furthermore, the partial contribution of each surfactant to the mixed micellization process, through their critical micelle concentrations and their aggregation numbers have been determined, as well. The solubilization of the drug in the mixed micelles has been also studied through the mass action model, by determining the association constant between the micelles and the drug. From these results, the use of the micelles studied in this work as potential models for vectors of antidepressant drugs of the amitriptyline family has been discussed. The theoretical aspects of the mixed micellization process have been also analyzed.  相似文献   

17.
The influence of hydrophobic chain length in nonionic surfactants on interfacial and thermodynamics properties of a binary anionic‐nonionic mixed surfactant was investigated. In this study, nonionic surfactants lauric‐monoethanolamide (C12 MEA) and myrisitic‐monoethanolamide (C14 MEA) were mixed with an anionic surfactant, α‐olefin sulfonate (AOS). The critical micelle concentration (cmc), maximum surface excess (Γmax), and minimum area per molecule (Amin) were obtained from surface tension isotherms at various temperatures. The thermodynamic parameters of micellization and adsorption were also computed. Micellar aggregation number (Nagg), micropolarity, and binding constant (Ksv) of pure and mixed surfactant system was calculated by fluorescence measurements. Rubingh's method was applied to calculate interaction parameters for the mixed surfactant systems.  相似文献   

18.
Aggregation behavior of dodecyldimethyl-N-2-phenoxyethylammonium bromide commonly called domiphen bromide (DB) was studied in aqueous solution. The Krafft temperature of the surfactant was measured. The surfactant has been shown to form micellar structures in a wide concentration range. The critical micelle concentration was determined by surface tension, conductivity, and fluorescence methods. The conductivity data were also employed to determine the degree of surfactant counterion dissociation. The changes in Gibb's free energy, enthalpy, and entropy of the micellization process were determined at different temperature. The steady-state fluorescence quenching measurements with pyrene and N-phenyl-1-naphthylamine as fluorescence probes were performed to obtain micellar aggregation number. The results were compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The micelle formation is energetically more favored in DB compared to that in DTAB. The 1H-NMR spectra were used to show that the 2-phenoxyethyl group, which folds back onto the micellar surface facilitates aggregate formation in DB.  相似文献   

19.
利用电导法研究了烷基三甲基溴化铵表面活性剂(CnTAB,n=12,14,16),即十二烷基三甲基溴化铵(DTAB),十四烷基三甲基溴化铵(TTAB)和十六烷基三甲基溴化铵(CTAB),在混合极性溶剂乙二醇/水(体积分数0~40%)中的胶团化行为。考察了温度对胶团形成的影响,应用相分离模型估算了三个表面活性剂的胶团热力学参数。结果表明临界胶团浓度(cmc)和反离子解离度(α)都随乙二醇组分的增加而增大。在乙二醇/水混合溶剂中胶团形成的标准吉布斯自由能相差很小,混合焓都是负值,而混合熵都为正值,说明焓-熵补偿效应在胶团形成中起主导作用。  相似文献   

20.
With the aim of studying the effect of urea on micellar properties of aqueous solutions of sodium dodecylsulfate (SDS), steadystate fluorescence experiments were carried out with different luminescence probes incorporated into the micellar phase. The increase of critical micelle concentration (CMC) of the surfactant with urea addition was followed by changes in the relative intensities of the vibrational fine structure of the pyrene fluorescence spectra. Micellar aggregation numbers were obtained from the analysis of fluorescence quenching data using ruthenium tris(bipyridyl) chloride and 9-mehylanthracene as a donorquencher pair. It was found that the decrease in the aggregation number is mainly controlled by rise in the surface area per headgroup of the surfactant. From fluorescence measurements, using several ionic probes (8-anilino-1-naphthalen-sulfonic acid, rhodamine B, and auramine O), it was found that urea decreases the polarity and increases the microviscosity of the micellar interface. These effects, which are dependent on the concentration of urea, can be explained according to a direct interaction of urea at the micellar surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号