首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用商用 CFD 软件对一小型车用离心压气机建立了数值模型,并将模拟结果与实验结果进行了对比:稳态的设计转速最高压比相差不超过 0.5%,最高效率相差不超过1.5%;非稳态模拟和实验得到的失速频率均为 3000Hz,模拟结果真实可信.主要利用设计转速下小流量工况时的非稳态数值模拟结果对喘振发生前离心压气机各部件的非稳态流动特点进行了详尽阐述.研究结果表明:小流量工况时离心压气机各部件均出现非稳态流动现象,这种非稳态效应在各部件中表现出不同的特点,且随着流量的减小这种非稳态效应会不断加剧.  相似文献   

2.
离心压气机工作特性及内部流动的试验研究   总被引:1,自引:0,他引:1  
本文在总结试验工作的基础上,讨论了离心压气机发生堵塞、喘振的现象及压气机特性曲线上高效区所在位置等问题;介绍了叶轮后的无叶扩压段及叶片扩压器中静压分布的测量结果;提出了叶片扩压器的简化流动模型。   相似文献   

3.
级环境下叶片扩压器流场的实验与数值研究   总被引:6,自引:0,他引:6  
高丽敏  席光  周莉  王尚锦 《力学学报》2005,37(1):110-119
为了研究离心压缩机级环境下的非定常干扰的基本流动现象,并验证多级叶轮机械的CFD软件的分析能力, 对一大尺度离心压缩机的叶片扩压器流场进行了实验测量和数值计算. 实验采用了固定热线、相位锁定------系综平均技术,用常温热线风速仪对叶轮后的叶片扩压器通道内不同周向、径向和轴向位置处的非定常速度进行了测量,同时提出了非定常强度的概念,以定量考核非定常的影响.实验结果表明, 叶片扩压器内的非定常流动非常复杂,其时间周期并非叶轮叶片通过时间,随着与离心叶轮之间的距离增大,非定常扰动逐渐减弱,但一直延续到叶片扩压器的出口.另外,对该实验压缩机级开展了两个不同的数值计算,并与实验数据进行了比较:定常数值计算软件采用了作者发展的确定应力模型,非定常数值计算是用商业软件NUMECA实现的,计算采用了滑移界面技术. 两个计算结果与实验在扩压器的进口截面处吻合得很好.  相似文献   

4.
在不同进口导叶预旋角度下,采用非定常的方法对进口导叶/叶轮/扩压器三部件之间非定常相干进行了数值与实验研究,探讨了三部件之间动静相干的机理.结果表明,在进口导叶/叶轮/扩压器三部件相干时,最大的脉动压力出现在叶轮和扩压器之间的动静交界面上.当进口导叶预旋角度存在时,叶轮与扩压器之间无叶区内的非定常流动以叶轮叶片通过频率和1/2叶片通过频率为基频;而当扩压器进口安装角增大时,径向间隙内的流动则主要以1/2叶片通过频率为基频.在不同的配置下,湍流强度和非定常度均有朝向轮盘增加的趋势.在进口导叶正预旋60°同扩压器进口安装角为17°时的配置有增大湍流强度和非定常度的趋势.  相似文献   

5.
本文在离心压气机试验工作基础上对堵塞与喘振现象进行了分析,介绍了计算叶片扩压器与叶轮堵塞流量的方法以及设计中导风轮进口喉部面积与叶片扩压器喉部面积应保持的正确比例。计算结果与试验数据进行比较获得了较好的一致性。本文还介绍了叶片扩压器与叶轮流道静压分布的测量结果,并结合试验现象运用边界层概念对离心压气机喘振问题进行了分析。   相似文献   

6.
焦哲  符松 《计算力学学报》2016,33(4):588-593
重点研究高速离心压气机叶轮与机匣间的间隙流动及其温度分布。研究将离心压气机简化为高速转动圆盘,搭建了相关实验平台,并开展了相应的数值模拟研究。通过改变转动圆盘的转速和轴向进入的冷却流的流量,研究了转速和流量对于间隙内温度和速度分布的影响。结果显示,转速是影响温度变化的最主要因素,转速越大,温度越高;同等幅度的流量变化对温度的影响则较小。研究发现,在实验和模拟对应的大雷诺数条件下,无量纲的速度分布基本不受到圆盘转速、冷却流量和温度场的影响。  相似文献   

7.
吴虎  孙娜 《力学与实践》2010,32(2):26-31
整理和归纳出合适的流动损失和落后角模型,并将其与逐排基元叶片算法相结合,给出了计算多级轴流压气机特性工程方法;进一步将其与复合形优化方法相结合,对多级轴流压气机多叶排调节扩稳进行了优化模拟,并应用于某8级轴流压气机算例计算.结果表明,在部分转速工况下,采用带性能约束的优化调节在不明显降低性能的同时能够显著减小多级压气机不稳定点流量;在设计工况下,采用适当的变几何优化调节不仅能明显扩大压气机稳定工作范围,还能明显提高压气机绝热效率.  相似文献   

8.
胡晨星  杨策 《力学学报》2019,51(6):1775-1784
径向无叶扩压器的全局稳定性可能受到核心主流失稳,出口回流与壁面边界层分离等因素影响,对于宽无叶扩压器,无黏核心主流与壁面边界层流动对不稳定扰动诱发的作用机理是当前研究的重点.本文首先通过数值计算获得了大宽度比孤立无叶扩压器平均流动,然后基于小扰动理论和周向均质假设,分别对欧拉方程与 Navier-Stokes 方程进行线性化,建立了基于无黏核心流动的稳定性分析方法,以及基于涡黏性与分子黏性的混合稳定性分析方法;通过与实验结果的对比,验证了混合稳定性分析方法预测所得流动失稳频率和全局直接模态的准确性;最后基于伴随方法获得了特征值的结构敏感性,揭示了不同黏性处理条件下宽无叶扩压器内全局不失稳扰动的源发区域.在只考虑核心主流的无黏条件下,宽无叶扩压器内流动不稳定扰动来源于流场中部,为二维的离心失稳;在同时考虑核心主流与边界层的作用时,宽无叶扩压器不稳定扰动不仅来源于扩压器流场中部的核心主流,壁面回流对于不稳定扰动的产生了重要影响.   相似文献   

9.
低雷诺数下附面层组合抽吸方案对压气机特性影响的研究   总被引:1,自引:0,他引:1  
为了分析附面层抽吸流动控制对低雷诺数下压气机特性的影响,本文采用数值方法模拟了低雷诺数下附面层组合抽吸方案对NASA Rotor 37跨音速压气机性能和稳定性的影响特点及作用机理。通过在该压气机转子叶片吸力面和机匣上分别设计附面层抽吸槽,探讨了组合抽吸方案对低雷诺数下(H=20km)压气机性能和稳定性的影响。结果表明:采用组合抽吸方案后,压气机峰值效率提高约1.3%;压气机最大增压比提高约2.5%;压气机转子的近失速点流量减小约14.6%。进一步分析作用机理发现,组合抽吸槽有效抑制了附面层径向涡向叶顶的运动和聚集,使叶顶附面层分离区减少约70%从而有效改善了压气机的流场特性。  相似文献   

10.
径向无叶扩压器的全局稳定性可能受到核心主流失稳,出口回流与壁面边界层分离等因素影响,对于宽无叶扩压器,无黏核心主流与壁面边界层流动对不稳定扰动诱发的作用机理是当前研究的重点.本文首先通过数值计算获得了大宽度比孤立无叶扩压器平均流动,然后基于小扰动理论和周向均质假设,分别对欧拉方程与Navier-Stokes方程进行线性化,建立了基于无黏核心流动的稳定性分析方法,以及基于涡黏性与分子黏性的混合稳定性分析方法;通过与实验结果的对比,验证了混合稳定性分析方法预测所得流动失稳频率和全局直接模态的准确性;最后基于伴随方法获得了特征值的结构敏感性,揭示了不同黏性处理条件下宽无叶扩压器内全局不失稳扰动的源发区域.在只考虑核心主流的无黏条件下,宽无叶扩压器内流动不稳定扰动来源于流场中部,为二维的离心失稳;在同时考虑核心主流与边界层的作用时,宽无叶扩压器不稳定扰动不仅来源于扩压器流场中部的核心主流,壁面回流对于不稳定扰动的产生了重要影响.  相似文献   

11.
As part of an ongoing research project the performance and internal flow field of a high-pressure ratio centrifugal compressor is being investigated. Based on previous, primarily, point-wise laser-optical measurements the compressor was redesigned and resulted in an improved impeller and diffuser with a single-stage pressure ratio of 6:1 at 50,000 rpm. Current research activities involve the use of particle image velocimetry (PIV) to analyze and further improve the understanding of the complex flow phenomena inside the vaned diffuser given the capability of PIV of capturing spatial structures. The study includes phase-resolved measurements of the flow inside a diffuser vane passage with respect to the impeller blade position. Both, instantaneous and phase-averaged velocity fields are presented. The flow field results obtained by PIV are to be used for future validation of the related CFD calculations, which in turn are expected to lead to further improvements in compressor performance. In addition, the potential of stereo PIV for this type of turbomachinery application could be successfully demonstrated.  相似文献   

12.
Flow instabilities such as Rotating Stall and Surge limit the operating range of centrifugal compressors at low mass-flow rates. Employing compressible Large Eddy Simulations (LES), their generation mechanisms are exposed. Toward low mass-flow rate operating conditions, flow reversal over the blade tips (generated by the back pressure) causes an inflection point of the inlet flow profile. There, a shear-layer induces vortical structures circulating at the compressor inlet. Traces of these flow structures are observed until far downstream in the radial diffuser. The tip leakage flow exhibits angular momentum imparted by the impeller, which deteriorates the incidence angles at the blade tips through an over imposed swirling component to the incoming flow. We show that the impeller is incapable to maintain constant efficiency at surge operating conditions due to the extreme alteration of the incidence angle. This induces unsteady flow momentum transfer downstream, which is reflected as compression wave at the compressor outlet traveling toward the impeller. There, the pressure oscillations govern the tip leakage flow and hence, the incidence angles at the impeller. When these individual self-exited processes occurs in-phase, a surge limit-cycle establishes.  相似文献   

13.
Large-Eddy Simulations are conducted on a centrifugal pump at design and reduced flow-rates for three diffuser geometries, to investigate the effect of changing the diffuser inlet angle on the overall performance and the pressure fields. In particular, pressure fluctuations are investigated, which affect the unsteady loads acting on the pump, as well as vibrations, noise and cavitation phenomena. The considered modification of the diffuser geometry is targeted at decreasing the incidence angle at the off-design flow-rate by rotating the stationary blades of the pump around their leading edge. Results are compared against those of an earlier study, where the same modification of the diffuser inlet angle was achieved by increasing also the radial gap between impeller and diffuser, whose blades were rotated relative to their mid camber location. The comparisons across cases demonstrate that the radial gap between the trailing edge of the impeller blades and the leading edge of the diffuser blades has a more profound influence on pressure fluctuations, compared to the angle of incidence on the diffuser blades of the flow coming from the impeller.  相似文献   

14.
根据薄机翼理论,本文推导出在周期性阵风作用下扩压器环形叶棚叶片上不稳定脉动力计算公式,并可分析离心压缩机几何及气动参数对不稳定力的影响,利用调制理论,建立了一个可用于预测离心压缩机叶轮尾迹与叶片扩压器相互作用而导致的辐射声功率,给出其谐波及宽噪声的计算公式,计算与试验结果吻合很好。  相似文献   

15.
Large-Eddy Simulation is utilized to investigate the rotor–stator interaction within a centrifugal pump. Comparisons are presented across diffuser geometries for two values of the flow-rate. Decreasing the incidence angle on the diffuser blades at off-design is found the main source of higher pressure rise and lower overall values of turbulent kinetic energy within the pump, resulting in efficiency improvement. The impact on the second-order statistics of the flow is especially significant. However, the values of the pressure fluctuations acting on the diffuser blades, defining fatigue loads on them and cavitation phenomena, are found especially affected by the rotor–stator clearance. Results show that at reduced flow-rates the rotation of the diffuser blades around their mid camber is a better option than rotating them around their leading edge. They also suggest that at larger flow-rates the increased incidence on the diffuser blades causes pressure side separation and large shear layers populating the diffuser channels, not affecting substantially the region of interface between impeller and diffuser, but having detrimental effects on the performance of the latter. The rotation of the diffuser blades around their leading edge should be preferred when the pump operates at flow-rates larger than the design one, avoiding decreasing the rotor–stator gap, thus resulting in smoother rotor–stator interaction and lower pressure fluctuations.  相似文献   

16.
In a radial flow pump operating in off-design conditions, regions of stall can exist on the rotating impeller blade and on the downstream diffuser blade, vane or tongue. Interaction of these stall zones can generate complex patterns of vorticity concentrations. In turn, these vorticity concentrations are related to sources of unsteady stagnation enthalpy. The form of these patterns is strongly dependent on the instantaneous location of the impeller trailing-edge relative to the leading-edge of the vane.Comparison of instantaneous with ensemble-averaged images shows that the flow structure in the gap region between the impeller and the vane is highly repetitive. Away from this region, in particular in the separated shear layer from the vane, the nonrepetitive nature of the vorticity field is manifested in substantial reduction of peak levels of vorticity in the ensemble-averaged image, relative to the instantaneous image.The three-dimensional flow structure resulting from these separation zone interactions was characterized via end views of the flow patterns. Particularly pronounced concentrations of vorticity can occur in this plane. They tend to be located in the shear layer at the outer edge of the large-scale separation zone. These vorticity concentrations are, however, highly non-stationary for successive passages of the impeller blade. Ensemble-averaging reveals that they persist primarily on the endwalls of the diffuser.The authors are grateful to the Office of Naval Research for support of this research program  相似文献   

17.
The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement.In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency.The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume.The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps.  相似文献   

18.
Detailed particle-image velocimetry (PIV) measurements of flow fields inside semi-open impellers have been performed to understand better the internal flow patterns that are responsible for the unique performance of these centrifugal pumps operated in the range of very low specific speed. Two impellers, one equipped with six radial blades (impeller A) and the other with four conventional backward-swept blades (impeller B), are tested in a centrifugal pump designed to be operated at a non-dimensional specific speed of ns=0.24. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that impeller A achieves higher effective head than impeller B even though the flow patterns in impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of impeller A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号