首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于流固耦合的跨声速压气机叶片静气动弹性分析   总被引:2,自引:0,他引:2  
采用时域推进的双向流固耦合方法对一级跨声速压气机叶片流场和固体域进行数值模拟,研究跨声速转子叶片静气动弹性变形及其对气动性能的影响,对比分析了100%转速下转子叶片的气动特性和固有频率的变化.结果表明:转子叶片在气动力和离心惯性力共同作用下的弹性变形以扭转变形为主,气动力对叶尖前缘变形量的影响可达总变形量的20%.转子叶片变形后通道流通能力增强,气动特性曲线向大流量方向偏移.  相似文献   

2.
以某跨声速轴流压气机单转子为研究对象,应用数值模拟技术,采用全通道 计算方案,利用Jameson有限体积中心差分格式并结合Spalart-Allmaras 湍流模型获得进口畸变条件下该轴流压气机转子性能和内部流动细节,详细分析了进气周向 总压畸变对压气机转子内流场流动结构的影响. 并将计算结果与实验结果进行了比较, 结果表明,数值模拟的结果与实验结果符合较好,计算方案切实可行.  相似文献   

3.
叶轮机内附面层流动与分离的某些研究进展   总被引:1,自引:0,他引:1  
刘建勇  周盛  袁巍 《力学进展》2009,39(5):526-536
通过总结有关叶轮机内附面层的研究工作认为,周期性扫掠的上游尾迹改变了附面层的转捩方式,给附面层流动带来了强烈的非定常性,不同的尾迹强度和扫过频率决定了附面层内不同的时空结构; 此外,雷诺数、叶片负荷、表面粗糙度和来流条件等因素均能影响尾迹对附面层的非定常效应.随后总结了尾迹对附面层作用的机理, 并介绍了转捩模型的发展过程.最后提出了关于附面层研究方向的两个疑问,认为附面层分离后的复杂旋涡流场值得重点关注.   相似文献   

4.
王玉玲  高超  王娜 《实验力学》2016,31(3):386-392
飞行器抖振是一种非线性气动弹性问题,当飞行器进入抖振阶段时,将会对飞行器的性能产生严重影响。而在跨声速条件下,激波附面层相互作用会诱导机翼抖振。本文开展了跨声速条件下翼型抖振特性雷诺数效应的实验研究,揭示了翼型跨声速抖振起始迎角、激波运动前缘边界、频谱特性、抖振频率与雷诺数变化的基本规律。结论如下:雷诺数变化会导致抖振起始边界的改变,对抖振起始迎角下的功率谱密度峰值有明显影响;随着雷诺数的增大,激波运动的前缘后移。雷诺数变化对抖振频率有明显影响,随着马赫数增大,雷诺数效应增强。  相似文献   

5.
带扰流小槽道内单相流动阻力特性实验   总被引:2,自引:1,他引:1  
刘东  刘明侯  王亚青  徐侃 《力学学报》2010,42(6):1006-1012
采用水作为工质, 实验研究入口或出口端加入圆柱扰流的不同高宽比多槽道散热器的压降特性; 结果表明: 单位长度压降随雷诺数成线性关系. 提出了雷诺数、水力学直径和槽道高宽比的拟合准则; 拟合公式在实验数据误差范围内很好反应类似系统的流阻特性. 对于线切割小槽道, 其摩阻系数和雷诺数成反比, 且较圆管理论值偏大; 对线切割槽道阻力特性分析发现, 表面粗糙度是其最主要的影响因素, 而扰流对其影响较小; 在槽道前部设置扰流柱可以增强换热.   相似文献   

6.
开展了某背景飞机的高低速变雷诺数风洞试验,并对试验结果进行了分析;结合国外的一些变雷诺数风洞试验结论,给出了大展弦比运输类飞机雷诺数对升力、阻力以及俯仰力矩特性的影响规律。试验研究表明:升力特性方面,在中小迎角下,随着雷诺数增大,迎角相同时升力增加,大迎角时最大升力系数增大,失速迎角增大;阻力特性方面,随着雷诺数的增大阻力减小,并且最小阻力系数随着雷诺数对数的增加基本呈线性减小;俯仰力矩特性方面,随着雷诺数增大机翼后部载荷增大,低头力矩增大,稳定性增强。除此之外,文中还从雷诺数对气动特性影响机理角度出发,分析了这些规律形成的原因。  相似文献   

7.
界面剪切力作用下波状液膜流的水动力稳定性   总被引:1,自引:1,他引:0  
液膜流的水动力稳定性作为保障其高效传热传质性能的重要因素之一,受多种因素的制约和影响. 当气液界面处存在因气流流动而产生剪切力作用时,剪切力将通过改变界面处的边界条件,从而影响液膜流动的稳定性. 基于边界层理论,采用积分法建立了剪切力作用下降液膜表面波演化方程,分析了界面剪切力对水动力稳定性的影响. 研究表明,正向剪切力为不稳定性因素,反向剪切力在较小雷诺数时为不稳定因素,在大雷诺数时为稳定性因素;正向剪切力使临界波数和临界波速增大,反向剪切力使其减小;剪切力对临界波速的影响在不同雷诺数下也有所不同.   相似文献   

8.
变几何叶片对压气机特性影响的实验研究及分析   总被引:3,自引:0,他引:3  
利用带导叶的单级轴流压气机实验台,详细测量了进口导叶无预旋、全叶高预旋2度和叶顶端部预旋2度对压气机总性能、基元性能及失速边界的影响。在设计及非设计转速下,通过对比三种导叶几何条件下的性能曲线,探讨了导叶预旋在非设计转速下的扩稳效果及设计转速下对 气机性能的影响,分析了利用端弯技术扩大压气机稳定工作范围的机理,该研究进一步说明了端弯技术是推迟轴流压气机不稳定流动发生的有效手段之一,可以很方便的用于实际轴流压气机中。  相似文献   

9.
“空气分流器式”前置扰流器的设计及实验研究   总被引:1,自引:0,他引:1  
实验研究了“空气分流器式”前置扰流器对单级轴流压气机转子性能的影响,对前置扰流器的几个关键结构尺寸-分流环前端间隙、分流环轴向前置量、稳定片倾斜角等进行了优化配置,得出了各主要结构参数对压气机稳定工作裕度及效率的影响,归纳了若干该型前置扰流器的设计准则,分析了“空气分流器式”前置扰流器的作用机理。  相似文献   

10.
低压涡轮内部流动及其气动设计研究进展   总被引:3,自引:0,他引:3  
邹正平  叶建  刘火星  李维  杨琳  冯涛 《力学进展》2007,37(4):551-562
随着高空无人飞行器研究的不断升温, 高空低雷诺数条件下动力装置的研究越来越受到人们的重视.结合近年来国内外相关领域的研究工作, 对低雷诺数低压涡轮内部复杂流动机理的研究进展进行了介绍, 包括低雷诺数情况下低压涡轮内部非定常流动的特点, 叶片边界层分离及转捩现象机理, 上游周期性尾迹与下游叶片边界层相互作用机理等. 在此基础上给出了适合低雷诺数条件的低压涡轮气动设计方法:尾迹通过与边界层的相互作用, 能够抑制分离, 进而减小叶型损失, 在气动设计中有效引入非定常效应可以大幅度提高低压涡轮的气动负荷或降低气动损失, 最终达到提高性能的目的;数值及实验结果验证了这种设计方法的有效性.   相似文献   

11.
The stability of the laminar flow regime in the boundary layer developed on a wall is increased considerably by the relatively slight extraction of fluid from the wall [1–4]. In the theoretical study of this phenomenon, all the investigators known to the present authors have taken into account only the increase in the fullness of the velocity profile in the boundary layer with suction. Computations of the stability characteristics have been made on the assumption that there are no transverse velocities in the laminar boundary layer.We present below an analysis of the stability of the laminar boundary layer in the presence of a constant transverse velocity in the near-wall region (suction). The calculations made show the existence for a given velocity profile in the boundary layer of a relative suction velocity v=v such that with suction velocities greater than v the flow remains stable at all Reynolds numbers, while the method used in the cited references gives a definite finite critical Reynolds number, equal in our notation to the Reynolds number at v=0, for each relative suction velocity.It was found that with suction of fluid from the boundary layer the region of instability has finite dimensions, i.e., there exist lower and upper critical Reynolds numbers. The flow is stable if its Reynolds number is less than the lower, or greater than the upper values of the critical Reynolds number.The instability region diminishes with increase in the relative suction velocity, and at a value of this velocity which is specific for each value of the velocity profile the instability region degenerates into a point-the flow becomes absolutely stable. Thus, with distributed suction it is advisable to increase the relative suction velocity only to a definite magnitude corresponding to disappearance of the instability region. The computational results presented make it possible to estimate this velocity for velocity profiles ranging from a Blasius profile to an asymptotic profile. Specific calculations were made for a family of Wuest profiles, since under actual conditions with suction there always exists a starting segment of the boundary layer [1, 2].  相似文献   

12.
The possibility of controlling the stability of a nonstationary boundary layer on the attachment line of a high-aspect-ratio swept wing by means of periodic variations of the surface temperature or the gas suction velocity at sub- or supersonic free-stream velocities is considered. The characteristic time scale of the variations of the surface temperature or the gas suction velocity on the attachment line is assumed to be equal to the characteristic aerodynamic time. On this assumption the stability characteristics of quasisteady attachment-line boundary layer flows are studied, the minimum values of the critical Reynolds numbers Re* of loss of stability are determined as functions of the temperature and the suction velocity, and examples of the periodic dependence of the surface temperature and the suction velocity for which, in the case of nonstationary flow, the time-average values of Re* exceed the analogous values for the steady-state boundary layer are constructed.  相似文献   

13.
14.
Three-dimensional corner stall is one of the key factors limiting the compressor performance. This paper presents a detailed experimental and computational study of a flow control strategy involving the endwall suction, aiming to eliminate the hub corner stall in a highly loaded axial compressor cascade. Various mass flow suction cases were parametrically tested with the aim of eliminating the corner stall by applying a minimum suction flow ratio. In the experiments, seven-hole pressure probe traverses, different loading distributions and surface oil flow visualizations were applied to address the flow and loss mechanisms in the cascade. Measurements were supplemented with numerical predictions from a commercially available CFD code. It was found that the corner stall, characterized by a large amount of reversed fluid, occupied a large region over the blade suction surface in the highly loaded compressor airfoil, rather than occurring at the junction of a blade suction surface and the endwall as in the conventionally loaded compressor airfoil. By applying flow control, the dominant flow structures, e.g. the flow separations and particularly the corner stall, within the compressor cascade were significantly affected. The maximum spanwise penetration depth of the endwall flow on the suction surface was significantly decreased once the endwall suction flow was applied. Furthermore, the corner stall was completely eliminated by suctioning the mass flow at a specific ratio of the inlet boundary layer flow rate. The midspan flow field was not notably affected, and a further increase in suction mass flow did not benefit the flow field approaching the endwall.  相似文献   

15.
The linear stability of the flat plate boundary layer with surface blowing and suction is investigated by the application of numerical techniques. Complete neutral stability curves, critical Reynolds numbers and wave numbers, and other stability characteristics are determined for a wide range of surface mass transfer intensities. The critical Reynolds number, based on the displacement thickness, is found to vary from 59 to 32500 between the extreme limits of blowing and suction that are investigated. Comparisons are made between the present results and available linear stability information for boundary layers with surface mass transfer and with free-stream pressure gradients. The universal stability bound of Joseph is evaluated and compared with the corresponding numerically exact neutral stability curve.  相似文献   

16.
The preconditioning technique can address the stiffness of a low Mach number flow, while its stability is poor. Based on the conventional preconditioning method of Roe's scheme, a low-diffusion scheme is proposed. An adjustable parameter is introduced to control numerical dissipation, especially over the dissipation in the boundary layer and extremely in a low speed region. Numerical simulations of the low Mach number and low Reynolds number flows past a cylinder and the low Mach number and high Reynolds number flows past NACA0012 and S809 airfoils are performed to validate the new scheme. Results of the three tests well agree with experimental data, showing the applicability of the proposed scheme to low Mach number flow simulations.  相似文献   

17.
The phenomenon of shock boundary layer interaction of a shock train under the influence of a normal suction slot is studied. In previous work, it was found that a normal, circumferential suction slot is sufficient to stabilize the primary shock of a shock train in as much as that the back pressure of the shock train can be increased until the shock train gradually changes into a single normal shock. Based on the experimental and numerical results, a flow model was derived which explains the transition of a shock train into a single shock under the influence of boundary layer suction. In this work, the normal shock boundary layer interaction model is validated against flow cases with different upstream Mach and Reynolds numbers. For that purpose three different nozzle flows are investigated at various total pressure levels. In a second step, the flow model is extended to the oblique shock case, correlating the suction mass flow with the total pressure distribution of the incoming boundary layer and the static pressure downstream of the oblique shock. Finally, the influence of the suction cavity pressure onto the shock boundary layer interaction is considered.  相似文献   

18.
The stability of a boundary layer with volume heat supply on the attachment line of a swept wing is investigated within the framework of the linear theory at supersonic inviscid-free-stream Mach numbers. The results of numerical calculations of the flow stability and neutral curves are presented for the flow on the leading edge of a swept wing with a swept angle χ=60° at various free-stream Mach numbers. The effect of volume heat supply on the characteristics of boundary layer stability on the attachment line is studied at a surface temperature equal to the temperature of the external inviscid flow. It is shown that in the case of a supersonic external inviscid flow volume heat supply may result in an increase in the critical Reynolds number and stabilization of disturbances corresponding to large wave numbers. For certain energy supply parameters the situation is reversed, the unstable disturbances corresponding to the main flow-instability zone are stabilized but another zone of flow-instability with small wave numbers and a significantly lower critical Reynolds number appears.  相似文献   

19.
We study the stability of the flow which forms in a plane channel with influx of an incompressible viscous fluid through its porous parallel walls. Under certain assumptions the study of the stability reduces to the solution of modified Orr-Sommerfeld equation accounting for the transverse component of the main-flow velocity. As a result of numerical integration of this equation we find the dependence of the local critical Reynolds number on the blowing Reynolds number R0, which may be defined by two factors: the variation of the longitudinal velocity profile with R0 and the presence of the transverse velocity component. A qualitative comparison is made of the computational results with experimental data on transition from laminar to turbulent flow regimes in channels with porous walls, which confirms that it is necessary to take into account the effect of the transverse component of the main-flow velocity on the main-flow stability in the problem in question.Flows in channels with porous walls are of interest for hydrodynamic stability theory in view of the fact that they can be described by the exact solutions of the Navier-Stokes equations by analogy with the known Poiseuille and Couette flows. However, in contrast with the latter, the flows in channels with porous walls (studies in [1], for example) will be nonparallel.The theory of hydrodynamic stability of parallel flows has frequently been applied to nonparallel flows (in the boundary layer, for example). In so doing the nonparallel nature of the flow has been taken into account only by varying the longitudinal velocity component profiles. A study was made in [2, 3] of the effect of the transverse component of the main flow on its stability. In the case of the boundary layer in a compressible gas, a considerable influence of the transverse velocity component on the critical Reynolds number was found in [2] and confirmed experimentally. A strong influence of the transverse velocity component on the instability region was also found in [3] in a study of the flow stability in a boundary layer with suction for an incompressible fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号