首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以苯胺为原料, 采用原位聚合法在聚四氟乙烯(PTFE)基体上合成聚苯胺/聚四氟乙烯(PANI/PTFE)复合膜. 利用光学显微镜、 扫描电子显微镜(SEM)、 傅里叶变换红外光谱(FTIR)、 紫外-可见吸收光谱(UV-Vis)和静态水接触角测试对PANI/PTFE复合膜的形貌、 结构和浸润性进行分析, 并对其油包水乳液分离性能、 通量和循环使用性能进行了测试. 研究结果表明, PANI/PTFE复合膜仅在重力条件就能有效分离油包水乳液; 而且重复数十次过滤后, PANI/PTFE复合膜仍具有良好的抗污能力和分离性能.  相似文献   

2.
TiO_2聚苯胺复合膜的光电化学   总被引:15,自引:2,他引:13  
利用电化学方法制备了TiO2 聚苯胺 (PANI)复合膜 .该膜具有比TiO2 或PANI膜更宽的吸收谱区 ,并且不同于利用聚苯胺光敏化的TiO2 膜 ,表现为两者复合材料膜的性质 .扫描电镜图表明 ,TiO2 微粒不完全覆盖着PANI膜 .根据TiO2 微粒光电流谱带的阈值能可得复盖在部分氧化态聚苯胺膜上的TiO2 微粒的禁带宽度为 3.0eV .部分氧化态聚苯胺膜的光电流谱遵循Fowler定律 ( 1/2 ~hυ成线性 ) .通过Fowler图得出部分氧化态聚苯胺的绝缘母体禁带宽度为 3.33eV ,并证实该绝缘母体为还原态聚苯胺 .从Mott Schottky图得到在 0 .0 5mol/LK3Fe(CN) 6 /K4 Fe(CN) 6 溶液中 (pH =8.52 )部分氧化态聚苯胺的平带电位为 0 .13V ,掺杂浓度为 5.3× 10 18cm- 3;TiO2 PANI复合膜的平带电位为 - 0 .6 5V ,掺杂浓度为 9.1× 10 19cm- 3.解释了TiO2 PANI复合膜的光电化学过程并描绘出其能带图 .利用TiO2 PANI复合膜能够有效地光降解苯酚溶液 .  相似文献   

3.
ZnO-聚苯胺复合膜的制备和性能研究   总被引:7,自引:0,他引:7  
利用溶胶-凝胶法在Au膜、聚苯胺膜(PANI)和ITO(导电玻璃)基体上制备ZnO纳米微粒膜,初步研究了该微粒膜的形貌,结构和紫外-可见吸收等性质.结果表明,PANI的孔洞结构抑制了ZnO颗粒的团聚,因此,ZnO-PANI复合膜的紫外-可见吸收光谱和荧光光谱相对于ZnO-Au微粒膜有一定程度的蓝移.光电流谱研究同时表明,ZnO-聚苯胺复合膜有望在光电化学方面得到应用.  相似文献   

4.
采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了电活性碳纳米管/聚苯胺/铁氰化镍(CNTs/PANI/NiHCF)复合膜.用傅立叶变换红外(FT-IR)光谱、X射线能谱仪(EDS)和扫描电镜(SEM)研究了复合膜组成及其表面形貌,并用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能.研究表明:CNTs/PANI/NiHCF复合膜为三维多孔有序的网络状结构,PANI和NiHCF以纳米颗粒形式存在并沿CNTs均匀分布;在电流密度为2mA.cm-2时,CNTs/PANI/NiHCF复合膜的比容量高达262.28F.g-1,比能量为29.51Wh.kg-1,电流密度为10mA.cm-2时比功率可达10228.61W.kg-1;在2000次循环充放电过程中,复合膜的电容量仅衰减19.92%,电荷充放电效率一直保持在99%以上.CNTs/PANI/NiHCF有机-无机杂化膜具有良好的功率特性和快速充放电能力,是一种优异的超级电容器材料.  相似文献   

5.
聚苯胺-富勒烯复合膜的光电响应   总被引:3,自引:0,他引:3  
通过溶液共混方法制备了聚苯胺(PANI)-富勒烯复合膜, 并用IR、XRD、UV-Vis等技术对其进行表征.红外光谱表明聚苯胺与C60之间存在相互作用且表现为掺杂态聚苯胺红外谱图样.X射线衍射表明复合体材料的结晶性能增强.光致发光谱表明聚苯胺与C60分子之间存在有效光诱导电荷分离现象.光电响应实验表明复合体薄膜的光吸收增强, 光电流增大, 说明聚苯胺-富勒烯复合膜受光照射后发生了光诱导电荷分离现象, C60掺杂聚苯胺有助于改善光伏特性.  相似文献   

6.
王喆  朱赞赞  力虎林 《化学学报》2007,65(12):1149-1154
在溶有单壁碳纳米管(SWNTs)的苯胺溶液中, 通过电化学共聚合法成功制备了单壁碳纳米管(SWNT)/聚苯胺(PANI)复合膜. 用电沉积法将铂沉积到SWNT/PANI复合膜上. 样品的成分和形貌分别用XRD和SEM表征. 四探针和电化学交流阻抗的研究表明被PANI包裹的SWNTs整齐地排列在复合膜中, 从而提高了复合膜的电导率, 促进了电荷转移. 循环伏安(CV)说明Pt修饰的SWNT/PANI复合膜对于甲醛氧化具有良好的电催化活性及稳定性. 研究结果表明SWNT/PANI复合膜是一种非常好的催化剂载体, 有着广泛的应用前景.  相似文献   

7.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

8.
Q-CdS/聚合物纳米复合膜的制备与荧光性能   总被引:3,自引:0,他引:3  
采用配位化学合成原理 ,分离制备出颗粒尺寸小于 10nm的单分散性的Q态CdS(Q CdS)纳米粒子 ,将Q CdS纳米粒子与聚合物复合成膜 ,制备出一系列Q CdS 聚合物纳米复合膜 .用紫外可见吸收光谱与透射电镜研究了纳米复合膜的量子尺寸效应和分散性 .通过荧光光谱探讨了不同聚合物基体材料和不同Q CdS含量的纳米复合膜的荧光发光性能 .结果表明 ,一方面这种以聚合物为基体的纳米复合膜 ,由于聚合物与Q CdS之间的相互作用 ,使纳米复合膜表现出与单一相组分完全不同的特征荧光发射峰 ;另一方面 ,随着纳米复合膜中Q CdS含量的不断增大 ,纳米复合膜的荧光强度不断增强 ,在一定浓度时达到最大值 .  相似文献   

9.
利用紫外光作为辅助条件,在反胶束体系中采用一步双原位法合成了硝酸(HNO3)、对甲基苯磺酸(TSA)和5-磺基水杨酸(SSA)掺杂的银/聚苯胺(Ag/PANI)纳米复合材料.通过对复合材料进行红外光谱(FTIR)、紫外光谱(UV-Vis)、扫描电镜(SEM)、X射线衍射(XRD)和导电性能的测试,研究了不同质子酸对Ag/PANI纳米复合材料结构、形貌和导电性能的影响.测试结果表明,3种酸掺杂制备的Ag/PANI纳米复合材料均为聚苯胺包覆银粒子的核-壳结构.不同的质子酸掺杂会对Ag/PANI纳米复合材料的电性能有重要影响.在3种酸掺杂的复合材料中,TSA掺杂的复合材料的电导率最佳,为215.14 S·cm-1.  相似文献   

10.
PI/PANI复合材料的制备与表征   总被引:1,自引:0,他引:1  
以纳米聚苯胺为电磁波的吸收剂,高强度、耐高温的聚酰亚胺为基体设计与制备了高强度、耐热、质轻、薄和吸收宽的新型纳米复合吸波材料.利用微乳液法,以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,以过硫酸铵(APS)为氧化剂合成了纳米级聚苯胺(PANI).在此基础上,以PANI的NMP溶液为均苯四甲酸二酐(PMDA)与4,4′-二氨基二苯醚(ODA)的聚合场所,室温下,原位聚合出PANI/聚酰胺酸(PAA)复合材料,再经过亚胺化制备出了PANI/PI复合材料.利用XRD表征了聚合物的结晶形态.红外光谱表征了中间体和聚合物.利用场发射扫描电镜发现PANI/PI复合材料呈现海岛结构,PANI像岛屿一样分散在PI的连续相中,两种材料复合并没有破坏各自的结晶形态.利用数字电桥和自制电极表征了不同含量复合材料的损耗性能,当聚苯胺加到3.4%以上时,复合材料的损耗因数提高了,并且随着频率的增大损耗因数直线增大.  相似文献   

11.
负载型纳米CdS制备及催化分解水制氢的研究进展   总被引:2,自引:1,他引:1  
硫化镉(CdS)是一种研究广泛的光催化剂,禁带能为2.4 eV,可以吸收波长小于520 nm的紫外和可见光,吸收波长范围宽,作为光催化剂具有较大的优势.纯CdS的光催化效率较低,在水溶液中易发生光腐蚀,致使催化寿命缩短,限制了CdS的应用.利用载体比表面积大,易于离子交换且有利于电子传递等优点,将纳米CdS制备成负载型催化剂,可以有效地提高CdS的光催化效率与稳定性,成为CdS改性的一种有效手段.本文综述了以SiO2、Al2O3、MgO、分子筛、高分子材料、层状化合物及钙钛矿型复合氧化物等为载体,制备负载型纳米CdS光催化剂的方法及其在光催化分解水制氢中的应用.  相似文献   

12.
Single-walled carbon nanotube (SWNT)/Polyaniline (PANI) composite film with good dispersion was prepared by electropolymerization of aniline containing well-dissolved SWNTs. Platinum (Pt) particles were electrodeposited on the SWNT/PANI composite film subsequently. The presence of SWNTs and platinum in the composite film was confirmed by XRD analysis. Four-point probe investigation exhibits that the electrical conductivity of SWNT/PANI composite film is significantly higher than that of pure PANI film. Cyclic voltammogram and Chronoamperogram show that Pt-modified SWNT/PANI electrode performs higher electrocatalytic activity than Pt-modified pure PANI electrode toward formic acid oxidation.  相似文献   

13.
静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征   总被引:1,自引:0,他引:1  
利用静电纺丝技术,以聚丙烯腈(PAN)和苯胺(ANI)为前驱物,用过硫酸胺(APS)溶液在低温下缓慢氧化聚合,制备了PAN/PANI复合纳米纤维,直径约500 nm.通过扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)和激光拉曼(RAMAN)光谱仪等测试手段对材料的形貌和结构进行了表征.探讨了材料制备过程中影响纤维形貌、尺寸、均匀度的因素和PANI含量对复合纤维导电性能的影响,结果表明,PAN浓度、ANI的加入量和电压是影响纤维特性的主要因素;PANI在PAN基体中呈纳米尺寸分布,复合纳米纤维具有良好的导电性能,导电率可达10-2S/cm.  相似文献   

14.
Polyaniline (PANI)/carbon aerogel (CA) composite electrode materials were prepared by chemical oxidation polymerization. The morphology of PANI/CA composite was examined by scanning electron microscopy. The results showed that PANI was uniformly deposited onto the surface of porous CA and filled big inner pores of the CA. Electrochemical performance of the composite electrode was studied by cyclic voltammograms and galvanostatic charge/discharge measurements. The results indicated that the PANI/CA composite electrode had much better electrochemical performance, high reversibility, and high charge/discharge properties than CA. Moreover, the results based on cyclic voltammograms showed that the composite material has a high specific capacitance of 710.7 F g−1, while the capacitance of CA electrode was only 143.8 F g−1. Besides, the supercapacitor using the PANI/CA composite as electrode active material showed a stable cycle life in the potential range of −0.2–0.8 V.  相似文献   

15.
以DNSA掺杂剂,在醇(或酮)-水介质中采用原位溶液聚合法制备出了聚苯胺,以溶液共混法制备出了聚苯胺/聚苯乙烯复合材料,采用红外光谱、热失重、元素分析、扫描电镜对产物进行了表征。结果显示:掺杂的聚苯胺电导率最高为0.65 S/cm,优于常用的DBSA,具有一定实用价值和理论意义。该复合材料表面电阻率最低为101Ω/□数量级,并在一定范围内可调,可用于电磁屏蔽,适合于聚合物表面使用。  相似文献   

16.
以苯胺和过硫酸胺为原料,采用原位聚合方法合成了聚苯胺/碳化钨(PANI/WC)导电复合材料。研究了反应体系中碳化钨的含量对复合材料电导率的影响,确定了较佳的聚合条件,并且通过FT-IR、XRD、XPS和DSC-TGA等手段对复合材料的结构和性能进行了表征和分析。结果表明:碳化钨(WC)的加入提高了聚苯胺的电子导电性能,复合材料中聚苯胺组分为无定型,WC的晶型在反应前后并未发生变化,复合材料的热稳定性好并且质子化程度更高。  相似文献   

17.
界面聚合法制备PANI/TiO2纳米复合纤维材料   总被引:1,自引:0,他引:1  
采用界面自组装聚合的方法, 成功地制备出PANI/TiO2纳米复合纤维材料, 采用TEM, FTIR, XRD及TG等技术对其形貌、结构及热稳定性能进行了表征, 并考察了苯胺单体浓度、TiO2的活化与否对复合材料形貌的影响. 结果表明, TiO2的活化处理是影响该复合材料形貌的主要因素, 活化处理后的TiO2能进入PANI纳米纤维的内部, 且分散得更加均匀; PANI/TiO2纳米复合纤维的直径随着苯胺单体浓度的增加而增加. 同时, TiO2的加入改善了PANI的耐热性能. 采用该法合成的纳米复合材料具有合成条件温和、易于控制、纯化简单、省去了使用模板/消除模板的过程及能够一步得到大量产品等许多优点.  相似文献   

18.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
采用静电纺丝技术将聚苯胺(PANI)和稀土配合物Eu(BA)3phen掺杂到高分子材料聚乙烯吡咯烷酮(PVP)中, 制备出新型的具有光电双功能的Eu(BA)3phen/PANI/PVP复合纳米纤维. 采用扫描电子显微镜、 X射线能量色散谱仪、 荧光光谱仪及宽频介电松弛谱仪对样品进行了表征. 实验结果表明, 复合纳米纤维直径为(270±31) nm. 在275 nm紫外光激发下, Eu(BA)3phen/PANI/PVP复合纳米纤维发射出主峰位于580, 594和617 nm的红光, 对应于Eu3+的 5D0→7F0, 5D0→7F1和5D0→7F2跃迁. 当m[Eu(BA)3phen]:m(PANI):m(PVP)=15:10:100 时, 复合纳米纤维的荧光发射最强. 复合纤维的电导率随PANI含量的增大而升高. 在m(PANI):m(PVP)=50:100时, 其电导率在高频(106 Hz)下达到1.5×10-6 S/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号