首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose nanocrystals (CNCs) are promising biomaterials, but their tendency to agglomerate when dried limits their use in several applications. Ultrasonication is commonly used to disperse CNCs in water, bringing enough energy to the suspension to break agglomerates. While the optimized parameters for sonication are now well defined for small volumes of low concentration CNC suspensions, a deeper understanding of the influence of the dispersing process is needed to work with larger volumes, at higher concentrations. Herein, rheology is used to define the distribution and dispersion states upon ultrasonication of a 3.2 wt% CNC suspension. After considering the importance of the measurement sampling volume, the behavior of a more concentrated suspension (6.4 wt%) is examined and compared with a never-dried suspension of the same concentration to validate the dispersion state.  相似文献   

2.
Gold nanoparticles have been studied for many biomedical applications. However, alterations in the gold nanoparticles’ environment frequently lead to the formation of aggregates and agglomerates, which have not been well characterized. These new structures could significantly change the biological impact of the nanoparticles, so the appropriate characterization of these structures prior to biological administration is vital for the correct interpretation of toxicology results. By varying the solvent or heating under pressure, four reproducible gold nanoparticles structures were created: 10 nm primary particles, aggregates of the primary particles that contain non-reversible bonds between the individual nanoparticles, agglomerates of primary particles that contain reversible interactions between the individual nanoparticles, and agglomerated aggregates that have reversible bonds linking individual aggregates. Ultraviolet–visible (UV–Vis) spectroscopy, thermal gravitational analysis, and neutron activation analysis were each found to accurately measure the concentration of the primary particles. The primary particles measured 10 nm by dynamic light scattering (DLS) and had a spherical morphology by transmission electron microscopy (TEM) while the aggregates measured 110 nm by DLS and had a distorted morphology by TEM. The agglomerate and aggregated agglomerate samples both measured >1,000 nm by DLS, but the individual particles had significantly different morphologies by TEM. Multiple other analytical techniques, including ultracentrifugation, gel electrophoresis, and X-ray diffraction, also showed unique traits for each structure. The structural differences did not change in the presence of cell culture media or rat serum. In addition, the primary particles, aggregates, and agglomerates each had a unique UV–Vis spectrum, allowing for an inexpensive, rapid method to differentiate between the structures.  相似文献   

3.
The morphological properties of cellulose nanofibrils obtained from eucalyptus pulp fibres were assessed. Two samples were produced with the same chemical treatment (NaClO/NaBr/TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation), but distinct mechanical treatment intensities during homogenization. It was shown that the nanofibrils production yield increases with the mechanical energy. The effect of mechanical treatment on the yield was confirmed by laser profilometry of air-dried nanocellulose films. However, no significant differences were detected regarding the nanofibrils width as measured by atomic force microscopy (AFM) of air-dried films. On the other hand, differences in size were found either by laser diffraction spectroscopy or by dynamic light scattering (DLS) of the cellulose nanofibrils suspensions as a consequence of the differences in the length distribution of both samples. The nanofibrils length of the more nanofibrillated sample was calculated based on the width measured by AFM and the hydrodynamic diameter obtained by DLS. A length value of ca. 600 nm was estimated. The DLS hydrodynamic diameter, as an equivalent spherical diameter, was used to estimate the nanofibrils length assuming a cylinder with the same volume and with the diameter (width) assessed by AFM. A simple method is thus proposed to evaluate the cellulose nanofibrils length combining microscopy and light scattering methods.  相似文献   

4.
This paper compares the accuracy of conventional dynamic light scattering (DLS) and atomic force microscopy (AFM) for characterizing size distributions of polystyrene nanoparticles in the size range of 20–100 nm. Average DLS values for monosize dispersed particles are slightly higher than the nominal values whereas AFM values were slightly lower than nominal values. Bimodal distributions were easily identified with AFM, but DLS results were skewed toward larger particles. AFM characterization of nanoparticles using automated analysis software provides an accurate and rapid analysis for nanoparticle characterization and has advantages over DLS for non-monodispersed solutions.  相似文献   

5.
The high hydrophilicity of cellulose nanocrystals (CNC) may result in poor dispersion in some matrices and solvents. So in this work, two different methodologies were used to reduce the hydrophilicity of CNC. In the first methodology, CNC were acetylated (CNC-Ac) in a mixture of acetic and hydrochloric acid, and in the second methodology, polyethylene glycol (PEG) was adsorbed onto CNC surface (CNC-PEG) under stirring in aqueous solution. CNC obtained by both methods were characterized by transmission electron microscopy (TEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and thermogravimetric analysis (TGA). Images of TEM showed that the intrinsic morphology of cellulose was preserved after both treatments. FTIR confirmed acetylation reaction by the presence of a new band at 1732 cm?1 (acetate groups) and the consumption of OH groups. XRD showed a reduction in the crystallinity index for both applied methodologies. DLS showed reduced stability in water for CNC-Ac and CNC-PEG. Values of zeta potential changed after acetylation, from ??45 mV (CNC) to ??1 mV (CNC-Ac), and after adsorption of PEG, to ??26.7 mV (CNC-PEG). TGA showed a reduction in the thermal stability after both treatments and a change in the main degradation behavior for CNC-PEG. MTT assays showed that both proposed functionalizations induce cell proliferation, being even more evident for acetylation because, in addition to viability increase with time, it increased with the sample concentration.  相似文献   

6.
Nanoparticles possess unique, size-driven properties. However, they can be challenging to use as they easily agglomerate - their high surface area-to-volume ratio induces strong interparticle forces, generating agglomerates that are difficult to break. This issue prevails in organic particles as well, such as cellulose nanocrystals (CNCs); when in their dried form, strong hydrogen bonding enhances agglomeration. Ultrasonication is widely applied to prepare CNC suspensions, but the methodology employed is non-standardized and typically under-reported, and process efficiency is unknown. This limits the ability to adapt dispersion protocols at industrial scales. Herein, numerical simulations are used in conjunction with validation experiments to define and optimize key parameters for ultrasonic dispersion of CNCs, allowing an operating window to be inferred.  相似文献   

7.
The dispersion of NiO supported on boron-modified silicas has been studied by transmission electron microscopy (TEM) and XPS. The TEM experiments showed that all NiO is present in the form of crystallites; values for the dispersion were calculated on the basis of measurements of the size distributions of these crystallites. The XPS measurements were interpreted using a model which assumes large particle sizes and no re-partitioning of the supported species between internal pores and the surface when boron-modification is performed. The variations of dispersion with boron content obtained from this model agree well with the variations measured by TEM.  相似文献   

8.
Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) were dispersed in water and in a Pluronic F108 solution by four different dispersion methods (stirring, bath sonication, stirring followed by bath sonication, and sonication probe). The effect of the dispersion methods were evaluated in terms of the particle size distribution, the agglomerates size, and the exfoliated fraction produced, as well as in terms of the surface and bulk chemical composition. Energy dispersive X-ray, X-ray photoelectron spectroscopy, and centrifugal liquid sedimentation techniques were used to characterize pristine MWCNTs and their dispersion. It is shown that, irrespective of the dispersion methods used, the MWCNTs are strongly wrapped with the biocompatible surfactant Pluronic F108, thereby modifying the external surface of the MWCNTs. Some shortening of MWCNTs and more wrapping are also observed when sonication methods are used. These observations raise questions as to the validity of results obtained in toxicology tests, in vitro and in vivo, were such methods of dispersion procedures are used.  相似文献   

10.
Magnetite nanoparticles were synthesized and functionalized by coating the particle surfaces with gum arabic (GA) to improve particle stability in aqueous suspensions (i.e. biological media). Particle characterization was performed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) to analyze the morphology and quantify the size distribution of the nanoparticles, respectively. The results from DLS indicated that the GA-treated nanoparticles formed smaller agglomerates as compared to the untreated samples over a 30-h time frame. Thermogravimetric analyses indicated an average weight loss of 23%, showing that GA has a strong affinity toward the iron oxide surface. GA most likely contributes to␣colloid stability via steric stabilization. It was determined that the adsorption of GA onto magnetite exhibits Langmuir behavior.  相似文献   

11.
In this study, the effect of ultrasonic treatment duration on the morphology of self-assembled casein particles was investigated by atomic force microscopy (AFM), low vacuum scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the case of AFM images, the particle analysis which was carried out by the SPIP program showed that the self-assembled casein particles after being ultrasonically treated for 2 min got smaller in size compared to the casein particles that have not been exposed to any ultrasonic treatment. Surprisingly, however, increasing the ultrasonic time exposure of the particles resulted in an opposite effect where larger particles or aggregates seemed to be present. We show that by comparing the results obtained by AFM, SEM and TEM, the information extracted from the AFM images and analyzed by SPIP program give more detailed insights into particle sizes and morphology at the molecular level compared to SEM and TEM images, respectively.  相似文献   

12.
Different methods for characterizing the morphology of multiphase blends were applied to a blend of thermoplastic polyurethane with 20 wt% polypropylene as the dispersed phase. Optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and light scattering were compared. The microscopy methods were evaluated with respect to their suitability for quantitative image analysis for determination of the particle size distribution. Comparison of the particle size distributions revealed that the dependence of the measured particle size on the method of preparation and technique was not very pronounced. The main difference resulted from cutting the particles outside their maximum diameter. The measured particle sizes determined with methods that analyze the whole particles, such as SEM on separated particles and laser light scattering, are larger than those measured on cut specimens. The factor 4/π valid in monodisperse systems for the ratio between the real particle size and that measured on sections was found also to be applicable to this polydisperse blend system. Although light micros-copy requires the least preparation efforts, it is a reliable method for this blend system.  相似文献   

13.
In this paper, we proposed a novel and green approach for the synthesis of graphene nanosheets (GNS) and Pt nanoparticles-graphene nanosheets (Pt/GNS) hybrid materials, employing graphene oxide (GO) as precursor and sodium citrate as environmentally friendly reducing and stabilizing agent. The microstructures of GO and Pt/GNS were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and electrochemical measurements. The results confirmed that the uniform size distribution of Pt nanoparticles on the surface of GNS without agglomerates could be easily obtained via using sodium citrate as reductant, moreover the Pt/GNS hybrids exhibited high electrochemical activity.  相似文献   

14.
This present work reports the synthesis of Cellulose nanocrystals (CNCs) from cotton using an ultrasound-assisted acid hydrolysis. Further, the synthesized CNCs was comprehensively characterized using Fourier Transform Infrared Spectroscopy (FTIR) to analyze surface functional groups and X-ray diffraction (XRD) in studying structural characteristics. Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA) have been used to study the thermal properties of CNCs. Morphology of CNCs was studied using a Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). The crystallite size was found to be 10–50 nm using XRD data and the average particle size to be 221 nm using PSD analysis.  相似文献   

15.
Novel core–shell poly(acrylamide) magnetic nanogels with controllable particle size produced via a photochemical method in an emulsion-free aqueous system at room temperature have been developed for the first time. After Hoffmann elimination of carbonyl, nanogels with amino groups, or poly(acrylamide-vinyl amine) magnetic nanogels, were also obtained. Particle size, size distributions and zeta potential of the magnetic nanogels before and after Hoffmann elimination were measured by photo-correlation spectroscopy (PCS). The structure and morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The higher dispersibility and stability of the magnetic nanogels suggest promising potential applications in targeted radiopharmaceuticals carriers for cancer therapy, and in biological and medical studies as well.  相似文献   

16.
Fluorescent‐labeled cellulose nanocrystal (CNC) films have been used to record and protect information in paper materials, whereas the fluorescent materials usually suffer photobleaching. Herein, a strategy of solid‐state emission induced by the vertical assembly of CNCs was established. The assembly‐induced emission starts from the structural diffraction of CNC, whose wavelength is adjusted into the ultraviolet (UV) region for hiding information under natural light. The small diameter (≈10 nm) of CNCs then promotes the resonance between the vertically assembled CNCs and the UV light, leading to a strong blue emission with an emitting quantum efficiency as high as 13.90%. By introducing the vertical‐assembly film with a specific pattern into paper materials, an anti‐counterfeiting image is obtained under a UV radiation. Since CNCs are a kind of cellulose with high crystallinity, this material can be a wear‐resistant anti‐counterfeiting material for banknotes or other paper applications.  相似文献   

17.
The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.  相似文献   

18.
研究了粒径10~100 nm的二氧化硅纳米颗粒在非水基液中的表面活性剂辅助分散。结合颗粒表面特定官能团结构,针对性选择了合适的表面活性剂,氢键桥梁作用和长链分子空间位阻作用抑制了颗粒团聚行为。当表面活性剂体积分数6%的时候,动态光散射测试结果表明颗粒中位尺度30.2 nm,与透射电镜测试结果吻合,展现了良好的分散性。  相似文献   

19.
One of the main challenges in nanoecotoxicological investigations is in the selection of the most suitable measurement methods and protocols for nanoparticle characterisation. Several parameters have been identified as being important as they govern nanotoxicological activity, with some parameters being better defined than others. For example, as a parameter, there is some ambiguity as to how to measure dispersion stability in the context of ecotoxicological investigations; indeed, there is disagreement over which are the best methods to measure nanoparticle dispersion stability. The purpose of this article is to use various commercially available tools to measure dispersion stability and to understand the information given by each tool. In this study, CeO2 was dispersed in two different types of media: de-ionised water and electrolyte-containing fish medium. The DLS mean particle size of freshly dispersed sample in DI water was ~200 nm in diameter. A visual sedimentation experiment showed that nanoparticle dispersion made in the fish medium was less stable compared to corresponding dispersion in de-ionised water. Stability of these dispersions was monitored using various techniques, for a period of 3 days. Our findings have shown that dispersion stability can be suitably assessed by monitoring: (a) surface charge, (b) sedimentation events and (c) presence of agglomerates, through time. The majority of techniques employed here (zeta potential, particle size via DLS, fluorescence and UV–Vis spectroscopy and SEM) were shown to provide useful, complementary information on dispersion stability. Nanoparticle Tracking Analysis (NTA) provides useful, quantitative information on the concentration of nanoparticles in suspension, but is limited by its inability to accurately track the motion of large agglomerates found in the fish medium.  相似文献   

20.
In-situ grafting of natural rubber (NR) onto the carbon black (CB) surface by a solid-state method was used to obtain grafted carbon black (GCB). The morphology of the original CB and GCB particles was observed by AFM and TEM. The original CB particles fused together and occurred as large dendritic agglomerates while the GCB particles occurred as small aggregates about 150 nm in diameter. The dispersion and dispersion stability of CB and GCB in toluene and cyclohexene were studied by zeta potential and a spectrophotometer. The results showed that the grafting procedure can improve both dispersion and dispersion stability of CB particles. The dispersion in NR was studied by DMA and observed by SEM. It was shown that GCB has better dispersion than CB in a NR matrix. As expected a weakened filler-filler interaction and enhanced filler-polymer interaction occurred after grafting modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号