首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using first-principles density functional theory, we have investigated the electronic and field emission properties of carbon nanocones (CNCs) doped with N or B with 60° disclination. Our findings are that the emission properties for the doped CNCs depend on the doping species, position, and concentration. Compared to pristine CNC, N-doped CNCs exhibit better field emission properties, in which as the doping concentration increases from 1.25% to 2.5% the maximum emission current at applied electric field of 0.3 V/Å increases from 0.94 μA (one N atom is doped at the position adjacent to the pentagon) to 2.90 μA (two N atoms are doped at pentagon). As for pristine CNC the emission current is only 0.21 μA. However, B-doping has no significant influence on the emission properties of CNCs. Our findings suggest that N-doped CNCs can be used as a candidate for cold-emission electron sources.  相似文献   

2.
Cellulose nanocrystals (CNCs) have high aspect ratios, polydisperse size distributions, and a strong propensity for aggregation, all of which make them a challenging material for detailed size and morphology characterization. A CNC reference material produced by sulfuric acid hydrolysis of softwood pulp was characterized using a combination of dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy, and X-ray diffraction. As a starting point, a dispersion protocol using ultrasonication was developed to provide CNC suspensions with reproducible size distributions as assessed by DLS. Tests of various methods for AFM sample preparation demonstrated that spin coating on a positively charged substrate maximizes the number of individual particles for size analysis, while minimizing the presence of agglomerates. The effects of sample-to-sample variability, analyst bias, and sonication on size distributions were assessed by AFM. The latter experiment indicated that dispersion of agglomerates by sonication did not significantly change the size distribution of individual CNCs in suspension. Comparison with TEM data demonstrated that the two microscopy methods provide similar results for CNC length (mean ~?80 nm); however, the particle width as measured by TEM is approximately twice that of the CNC height (mean 3.5 nm) measured by AFM. The individual crystallite size measured by X-ray diffraction is intermediate between the two values, although closer to the AFM height, possibly indicating that laterally agglomerated CNCs contribute to the TEM width. Overall, this study provides detailed information that can be used to assess the factors that must be considered in measuring CNC size distributions, information that will be useful for benchmarking the performance of different industrially sourced materials.  相似文献   

3.
Nanoparticles possess unique, size-driven properties. However, they can be challenging to use as they easily agglomerate - their high surface area-to-volume ratio induces strong interparticle forces, generating agglomerates that are difficult to break. This issue prevails in organic particles as well, such as cellulose nanocrystals (CNCs); when in their dried form, strong hydrogen bonding enhances agglomeration. Ultrasonication is widely applied to prepare CNC suspensions, but the methodology employed is non-standardized and typically under-reported, and process efficiency is unknown. This limits the ability to adapt dispersion protocols at industrial scales. Herein, numerical simulations are used in conjunction with validation experiments to define and optimize key parameters for ultrasonic dispersion of CNCs, allowing an operating window to be inferred.  相似文献   

4.
Breakage of nanoparticle cluster require high-intensity devices for stable and uniform distribution of aggregates. The ultra-sonication process is a high energy-intensive technique that produces cavitation effect to break the aggregates. In the present study, ultra-sonication is used for the de-agglomeration of fumed silica nanoparticles in low to high viscosity liquids. Water- and glycerol-based dispersion has been investigated at different solid loadings (up to 10 wt% for water-based dispersion and 5 wt% in glycerol-based dispersion) and viscosity of continuous phase (1–100 mPa.s). Breakup mechanism and kinetics have been studied at optimized operating conditions and no significant effect is found at different solid loadings on breakup mechanism. Particle size measurements are reported and found that volume of fine generation increased with an increase in sonication time. Further, it is observed that the stability of dispersion in the liquid is very high even at high concentration of solid used. Larger agglomerates are found at high viscosity of continuous phase and a lag is also observed for 100 mPa.s glycerol solution even at low solid loading (1 wt%). From, rheological characterizations it is found that the behavior of dispersed solution changed with time, temperature and solid loading. Erosion is found to be the breakup mechanism and further, validated with scattering light characterization. Furthermore, power draw increased with an increase in the viscosity of continuous phase, however, no significant effect of solid loading is observed. It is also observed that process is more energy-efficient at higher solid loading as the volume of fine produced is more as compared to low solid loading. Therefore, it can be concluded that the stable and uniform dispersion of nanoparticles can be achieved using an ultra-sonication device at high solid loading in viscous liquids.  相似文献   

5.
We present a one-step electrochemical method to produce water-based stable carbon nano colloid (CNC) without adding any surfactants at the room temperature. The physical, chemical, and thermal properties of CNC prepared were characterized by using various techniques, such as particle size analyzer, zeta potential meter, TEM, XRD, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average primary size of the suspended spherical-shaped nanoparticles in the CNC was found to be ∼15 nm in diameter. The thermal conductivity of CNC compared with that of water was observed to increase up to ∼14% with the CNC concentration of ∼4.2 wt%. The CNC prepared in this study was considerably stable over the period of 600 h. With the assistance of FT-IR spectroscopy analysis, we confirmed the presence of carboxyl group (i.e., O–H stretching (3,458 cm−1) and C=O stretching (1,712 cm−1)) formed in the outer atomic layer of carbon nanoparticles, which (i) made the carbon particles hydrophilic and (ii) prevented the aggregation among primary nanoparticles by increasing the magnitude of zeta potential over the long period.  相似文献   

6.
Fluorescent‐labeled cellulose nanocrystal (CNC) films have been used to record and protect information in paper materials, whereas the fluorescent materials usually suffer photobleaching. Herein, a strategy of solid‐state emission induced by the vertical assembly of CNCs was established. The assembly‐induced emission starts from the structural diffraction of CNC, whose wavelength is adjusted into the ultraviolet (UV) region for hiding information under natural light. The small diameter (≈10 nm) of CNCs then promotes the resonance between the vertically assembled CNCs and the UV light, leading to a strong blue emission with an emitting quantum efficiency as high as 13.90%. By introducing the vertical‐assembly film with a specific pattern into paper materials, an anti‐counterfeiting image is obtained under a UV radiation. Since CNCs are a kind of cellulose with high crystallinity, this material can be a wear‐resistant anti‐counterfeiting material for banknotes or other paper applications.  相似文献   

7.
There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 μg/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 μg/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.  相似文献   

8.
A combination of Raman imaging with image analysis has been used to quantify the degree of mixing of cellulose nanocrystals (CNCs) in melt compounded high‐density polyethylene (HDPE). Raman spectroscopy is shown to provide an accurate ‘fingerprint’ of the composition of the cross‐sectional area of the end section of a formed composite. This information is then converted to a chemical image allowing spatial quantification of the mixing of CNCs in the HDPE. A degree of mixing between CNCs and HDPE is reported, with a strong tendency for the former to agglomerate with little dispersion. Freeze‐dried CNCs show better mixing with HDPE and a lower tendency to agglomerate than spray‐dried CNCs. This approach shows the potential to use Raman spectroscopy to quantify the degree of mixing of CNCs in a thermoplastic matrix. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
PURPOSE: Central neurocytomas (CNCs) are rare neuronal tumors that have a favorable prognosis and lower rate of recurrence compared with other intraventricular neoplasms. Although it may be difficult to distinguish CNC on conventional neuroimaging, typical MR spectroscopy (MRS) features have been reported. We describe the MRI and MRS features of CNC. MATERIALS AND METHODS: Eight patients with CNC were reviewed. Three patients underwent presurgical in vivo single-voxel MRS at short echo time (TE, 35 ms) and multi-voxel MR spectroscopic imaging at long TE (144 ms). The surgically resected tumor specimen of one of these patients was also studied ex vivo using high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance. RESULTS: All eight tumors were located in the lateral ventricles. In six patients, CNC extended into the third ventricle, and in two patients the tumor showed further contiguous intraventricular dissemination into the fourth ventricle. In all three patients who underwent MRS, a characteristic metabolite peak was detected at 3.55 parts per million (ppm) at both long and short TE. HRMAS confirmed the presence of elevated glycine (Gly) at 3.55 ppm, without increase in the concentration of myo-inositol found at the same chemical shift. Elevated choline (at 3.2 ppm) was also seen in all three patients. CONCLUSION: On MRS, CNCs have a typical appearance with a metabolite peak at 3.55 ppm due to increased Gly, and this feature may be helpful in presurgical diagnosis. Although they are rare benign intraventricular tumors, in atypical cases, CNCs can show extensive intraventricular dissemination into the fourth ventricle.  相似文献   

10.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

11.
This paper used molecular dynamics simulations to investigate buckling behaviors of open-tip carbon nanocones (CNCs) at elevated temperatures ranging from 300 to 700 K. Influences of cone height and apex angle on the buckling behaviors were examined. Some interesting findings, especially on the change in buckling mode shapes of the CNCs, were observed in the study. For the CNCs having an apex angle of 19.2°, the one with a lower cone height exhibited a shrinking/swelling buckling mode shape even at the higher temperature 700 K. However, as the cone height increased, the CNC displayed a deflective buckling mode shape at 300 K, but changed to a shrinking/swelling buckling mode shape when the temperature grew to 500 K. Regarding the influences of apex angle, the CNCs presented a deflective buckling mode shape even at 700 K as the apex angle expanded. This is opposite to the shrinking/swelling buckling mode shape of the CNC having the smallest apex angle of 19.2°.  相似文献   

12.
碳纳米锥力学特性的分子动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李明林  林凡  陈越 《物理学报》2013,62(1):16102-016102
结合原子间短程作用势(Brenner势)和长程作用势(Lennard-Jones势),利用分子动力学方法对各种锥角的碳纳米锥进行拉伸和压缩实验,获得其载荷-应变关系曲线、受拉/压载荷极限、应变极限和构形演变等力学特性,并与等量原子组成的碳纳米管进行比较研究.研究结果表明,等量碳原子组成的碳纳米锥的受拉/压载荷极限随着锥角的增大先是增大后减小,受拉/压应变极限则随着锥角的增大而增大.与碳纳米锥相比,等量碳原子组成的碳纳米管的受拉/压载荷极限和应变极限显得既不突出也不逊色.在受压构形演化方面,与碳纳米管丰富的径向屈曲/扭转/侧向屈曲组合形变不同,112.88°和83.62°锥角的碳纳米锥受压沿轴向完美内陷,而60.0°和38.94°锥角的碳纳米锥受压发生侧向屈曲.  相似文献   

13.
In this paper, dielectric properties of various thick PVP films cured at temperatures between 125° C and 200 °C are investigated. The thicknesses of PVP films are adjusted by varying their concentration in PGMEA solvent from 10 wt% to 2.5 wt%. Through FT-IR, CV, SEM, and AFM analyses, the optimum curing process temperatures (150 °C for 10 wt% and 7.5 wt% samples, and 175 °C for 5 wt% samples) where PET substrates can be thermally endured are proposed in terms of their low hysteresis voltage in the CV curve (1–2 V in 10 wt% samples, below 1 V in 7.5 wt% samples, and 0.5 V in 5 wt% samples).  相似文献   

14.
This present work reports the synthesis of Cellulose nanocrystals (CNCs) from cotton using an ultrasound-assisted acid hydrolysis. Further, the synthesized CNCs was comprehensively characterized using Fourier Transform Infrared Spectroscopy (FTIR) to analyze surface functional groups and X-ray diffraction (XRD) in studying structural characteristics. Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA) have been used to study the thermal properties of CNCs. Morphology of CNCs was studied using a Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). The crystallite size was found to be 10–50 nm using XRD data and the average particle size to be 221 nm using PSD analysis.  相似文献   

15.
We have developed a modified synthetic protocol for the growth of monodispersed, superparamagnetic, flower-like colloidal nanoclusters (CNCs), which are consisted of smaller iron oxide nanocrystals with adjustable size. We show that their optical properties can be tuned by applying an external magnetic field. The latter controls the subtle balance of the CNCs’ mutual interactions (magnetic versus electrostatic) and drives their assembly in aqueous media. Spectrophotometric measurements reveal that a diffuse reflectance maximum, in the visible range, is related to the CNCs organization. As the strength of the external magnetic field increases, in the range 160–600 G, the spectral weight of this feature shifts towards the blue region of the spectrum. The induced photonic crystal-like response entails a remarkable magneto-optical behavior, closely associated with the size-dependent characteristics of the CNCs ensemble. Such materials pave the way for promising technological implementations in photonics.  相似文献   

16.
Two-stage continuous production process for fatty acid methyl ester (FAME) from crude palm oil was performed using the rotor–stator hydrocavitation reactor. The novel ABS filament printed rotor having spherical holes on the surface of the rotor which is an efficient, fast and cost-effective procedure, was installed in the stainless steel stator of hydrosonic reactor. The 3D printed hydrosonic reactor was used to treat the FFA-rich in MCPO by esterification and followed by transesterification to produce the methyl ester. The optimum conditions of both esterification and transesterification processes were determined using the response surface methodology (RSM). For the 1st step esterification, the conditions of methanol 17.7 vol%, sulfuric acid 2.9 vol%, 3000 rpm rotor speed, hole’s diameter and depth 4 and 6 mm, and 25 L/h MCPO, were used for decreasing the FFA from 11.456 to 1.028 wt%. For the 2nd step, transesterification was employed with the optimal condition of 28.6 vol% methanol, 6.2 g/L of potassium hydroxide, 3000 rpm rotor speed, the dimension of the spherical holes on the rotor’s surface having diameter of 6.4 mm and 6.2 mm in depth, and esterified oil flow rate 25 L/h, for producing the methyl ester to over 99.163 wt%. Moreover, the purified biodiesel yields and the average energy consumption for the entire two-stage continuous process between hydrosonic and ultrasonic clamp reactors were compared. The results of purified methyl ester clearly indicate that the methyl esters of 99.163 wt% and 97.814 wt% were achieved from hydrosonic and ultrasonic clamp reactors, respectively, under the same optimized conditions. The maximum yields of purified biodiesel were 97.51 vol% and 88.69 vol% using hydrosonic and ultrasonic clamp reactors, respectively. The average energy consumption for the entire continuous two-stage process for both hydrosonic and ultrasonic clamp reactors were 0.049 and 0.056 kW h/L, respectively. For practical industrial processes, stainless steel rotors inside the stator was manufactured by CNC machine, which was also verified under the optimum conditions. The results showed that 1.07 wt% FFA and 99.221 wt% methyl ester of were obtained from first step and second step, respectively.  相似文献   

17.
High-efficient disaggregation of palygorskite (PAL) crystal aggregates into individual nanorods is the key to exploiting its nanometer properties, which remains a challenge at present. The sonochemical cavitation effects have been successfully employed for the intensification of physical and chemical processing applications, but it still lacks the relevant study on the scale-up disaggregation of PAL crystal bundles. Here, the energy-efficient, scale-up ultrasonic process was developed to disaggregate PAL aggregates in batches, and the effects of ultrasonic treatment time, temperature, and power on physicochemical features of PAL were systematically investigated. The results showed that the single dispersed PAL nanorods could be continuously produced by sonicating 15 wt% of PAL suspension at 20 kHz, 2000 W and 30 °C for 5 min retaining the original nanorod length and layered-chain structure. It also greatly improved the dispersion of nanorod crystal, specific surface area and suspension stability of PAL. The ultrasonically disaggregated PAL has a higher pulping rate in water (14.96 m3/t) and saturated NaCl system (14.45 m3/t), which is significantly better than that of natural PAL in water (14.72 m3/t) and saturated NaCl solution (12.37 m3/t). It suggests that the disaggregated PAL exhibits excellent potential and adaptability as a viscosity enhancer for drilling fluid. Therefore, this work provides a feasible and efficient ultrasonic process for large-scale industrialized disaggregation of PAL crystal bundles, laying a foundation for the high-value utilization of natural PAL as one-dimensional nanomaterials.  相似文献   

18.
We developed a temperature-controlled electrospinning apparatus specially for the polymers/IL system with high viscosity and surface tension and investigated the electrospinning of polyacrylonitrile (PAN)/1-butyl-3-methyl-imidazolium bromide ([BMIM][Br]) solutions. The rheological behaviors, surface tensions and conductivities of PAN/[BMIM]/[Br] solutions at different temperatures indicated that appropriately increasing the temperature is beneficial to their spinnability. It is also shown that PAN/[BMIM]/[Br] with a concentration of 3 wt%, 4 wt% and 5 wt% can be electrospun to fibers by increasing their temperatures to 70°C, 75°C or 85°C, respectively. A rotating drum composed of a dacron mesh was used as a collector in order to avoid the contraction of the wet fibers. This present study provides an alternative method for electrospinning polymer fibers.  相似文献   

19.
In this research, solvent based polyamide – imide (PAI)/clay nanocomposites were prepared successfully using the solution dispersion technique. With the assistance of the ultrasonic wave, the effect of the ultrasonic wave time on the microstructure of 3 wt% PAI/C20A nanocomposite (NC) was investigated. Then, the best ultrasonic parameters were selected and the effects of the concentration of Cloisite 20A (C20A) (1, 3 and 5 wt% C20A) on the microstructure and mechanical properties (adhesion, hardness, flexibility, wear and impact) of NCs were investigated. The PAI, C20A and nanocomposites (NC)s were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Wide-angle X-ray diffraction (WAXD). The results showed that the sample with 1 and 3 wt% C20A had better mechanical properties, as compared to the pure PAI and the 5 wt% NC.  相似文献   

20.
In this study, we introduce cobalt (Co)-doped zinc oxide (ZnO) spherical beads (SBs), synthesized using a sonochemical process, and their utilization for an acetone sensor that can be applied to an exhalation diagnostic device. The sonochemically synthezied Co-doped ZnO SBs were polycrystalline phases with sizes of several hundred nanometers formed by the aggregation of ZnO nanocrystals. As the Co doping concentration increased, the amount of substitutionally doped Co2+ in the ZnO nanocrystals increased, and we observed that the fraction of Co3+ in the Co-doped ZnO SBs increased while the fraction of oxygen vacancies decreased. At an optimal Co-doping concentration of 2 wt%, the sensor operating temperature decreased from 300 to 250 °C, response to 1 ppm acetone improved from 3.3 to 7.9, and minimum acetone detection concentration was measured at 43 ppb (response, 1.75). These enhancements are attributed to the catalytic role of Co3+ in acetone oxidation. Finally, a sensor fabricated using 2 wt% Co-doped ZnO SBs was installed in a commercially available exhalation diagnostic device to successfully measure the concentration of acetone in 1 ml of exhaled air from a healthy adult, returning a value of 0.44 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号