首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The reaction of Os~+(~6D,~4F) with N_2O has been investigated at B3LYP/TZVP and CCSD(T)/6-311+G~* levels of theory.The mechanisms corresponding to O-atom and N-atom transfer reactions have been revealed.It was found that on the sextet reaction surface both the O-atom and N-atom transfer reactions undergo through direct-abstraction mechanism,leading to the formation of OsO~+ and OsN~+,whereas on quartet surface the two reactions undergo through O-N bond or N-N bond insertion mechanism.The calculated energ...  相似文献   

2.
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm-1 in the intermediate complex IM1-4B2. Thus, the changes of its ...  相似文献   

3.
YANG Jing 《结构化学》2014,(1):122-134
A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7).  相似文献   

4.
The mechanism, catalytic effect and substituent effect of the hetero-Diels-Alder reactions between phosphonodithioformate and butadienes have been investigated theoretically using density functional theory at the B3LYP/6-31G(d) level. The results show that all of these reactions proceed in a concerted but asynchronous way. In some reactions the formation of C-S bond is prior to that of C-C and opposite result is found in other reactions. The BF3 catalyst and trimethylsilyloxy group may lower the activation barriers by changing the energies of FMOs for reactant molecules. With the BF3-catalyzed reactions, the complete regioselectivity observed experimentally has well been reproduced by theoretical calculation and these results originate probably from blue-shifting C-H...F hydrogen bond interaction in some transition states.  相似文献   

5.
The reaction mechanism of 1-chloroethane with hydroxyl radical has been inves- tigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (△Hr) than with bond dissociation enthalpies (BDE).  相似文献   

6.
The mechanism, catalytic effect and solvent effect of the hetero-Diels-Alder reac- tions between 3-pyridinedithioesters and 1-phenylsulfanylbutadiene have been studied theoretically using density functional theory (DFT) at the B3LYP/6-31G(d) level. The results show that all of these reactions proceed in a concerted but asynchronous way. In some reactions the formation of C-S bond is prior to that of C-C bond and the opposite results are found in other reactions. The BF3 catalyst may lower the activation barriers by changing the energies of LUMO for 3-pyridine- dithioester. THF solvent has trivial influence on the potential energy surface of these reactions. With the BF3-catalyzed reactions, regioselectivity and stereoselectivity observed experimentally were predicted correctly by calculations and these results originate probably from C-H···F interaction in two transition states.  相似文献   

7.
In order to elucidate the reaction mechanisms of reaction Sc with propargyl alcohol (PPA), the triplet potential energy surface for the reactions has been theoretically investigated using a DFT method. The geometries for the reactants, intermediates, transition states and products were completely optimized at B3LYP/DZVP level. The single point energy of each stationary point was calculated at MP4/(6-311+G** for C, H, O and Lanl2dz for Sc) level. All the transition states were verified by the vibrational analysis and the internal reaction coordinate (IRC) calculations. The present results show that the reaction takes an insertion-elimination mechanism both along the O—H and C—O bond activation branches, but the C—O bond activation is much more favorable in energy than the O—H bond activation. All theoretical results not only support the existing conclusions inferred from early experiment, but also complement the pathway and mechanism for this reaction.  相似文献   

8.
This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH_2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO_3CH_2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH_2 and CO_2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.  相似文献   

9.
Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aromatic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and protoncoupled electron transfer have been theoretically examined. Cu(Ⅱ)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(Ⅱ), oxidation of the Cu(Ⅱ) intermediate, and reductive elimination from Cu(Ⅲ). Our calculations show that Cu(Ⅱ) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also interesting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(Ⅱ), whereas for the latter it is reductive elimination from Cu(Ⅲ). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2 -free conditions.  相似文献   

10.
Two possible reactions ofNbS+ (<3∑-,1ΓF) with CO in the gas phase have been studied by using B3LYP and CCSD(T) methods:the O/S exchange reaction (NbS+?" CO→NbO+?"CS) and the S-transfer reaction (NbS+?"CO→Nb+?"COS). The two reactions have a one-step mechanism. The barriers of the O/S exchange reaction on the triplet and singlet surfaces are 51.2 and 52.4 kcal/mol,respectively, and the barriers of the S-transfer reaction are 58.3 and 78.0 kcal/mol, respectively. The results indicate that the S-transfer and the O/S exchange reaction of the 3∑- ground state of NbS+ are competing, but, for the S-transfer reaction, the 1Γ exited state is more reactive. The differences between the reactions of NbS+ (3∑-, 1F) and VS+ (3∑-, 1Γ) are discussed.  相似文献   

11.
The reactivity of Ni+ with OCS on both doublet and quartet potential energy surfaces (PES) has been investigated at the B3LYP/6-311+G(d) level. The object of this investigation was the elucidation of the reaction mechanism. The calculated results indicated that both the CS and CO bond activations proceed via an insertion–elimination mechanism. Intersystem crossing between the doublet and quartet surfaces may occur along both the CS and CO bond activation branches. The ground states of NiS+ and NiO+ were found to be quartets, whereas NiCO+ and NiCS+ have doublet ground states. The CS bond activation is energetically much more favorable than the CO bond activation. All theoretical results are in line with early experiments.  相似文献   

12.
运用密度泛函理论(DFT)中的B3LYP方法,U原子用含相对论有效原子实势(ECP)校正的基组(SDD),C、O原子采用6-311+G(d)基组,对气相中U+和CO2的反应进行了理论研究.通过研究二重和四重自旋态的反应势能面(PESs),优化得到了两条反应路径的反应物、中间体、过渡态和产物的结构.用"两态反应"(TSR)分析反应机理,结果表明体系的优先选择路径为高自旋态进入和低自旋态离开反应,发生在四重态和二重态的自旋多重度的改变使得整个反应系统能以一个低能反应途径进行.  相似文献   

13.
采用密度泛函理论(DFT)B3LYP与cCsD方法研究了二重态和四重态势能面自旋禁阻反应VO(∑’)活化cH30H(1^A′)分子c—H,0—H键的微观机理.通过自旋一轨道耦合的计算讨论了势能面交叉点和可能的自旋翻转过程.在MEcP处,四重态和二重态问的旋轨耦合常数为131.14cm^-1.自旋多重度发生改变,从四重态系间穿越到二重态势能面形成中间体2^IM1,导致反应势能面的势垒明显降低.  相似文献   

14.
Total spin-state energy splittings are calculated for mono- and dications of the formula {[Re]-Cn-[Re]}z+ where [Re] = eta5-(C5Me5)Re(NO)(PPh3). Cn is an even-numbered carbon chain with n ranging from 4 to 20, and z is 1 or 2. These complexes are experimentally known, and their potential role as molecular electronic devices initiated this work. We have considered the different total spin states monocation/doublet, monocation/quartet, dication/singlet, and dication/triplet. Data obtained for two density functionals BP86 and B3LYP were compared to verify the internal consistency of the results. In both ionization states, the low-spin state is the ground state, but the spin-state splittings decrease as the chain gets longer. For the dications, the splitting reaches a nearly constant value of about 10 kJ/mol with BP86 and about 4 kJ/mol with B3LYP when there are at least 14 carbon atoms in the chain, whereas for the monocations, no constant value appears to be reached asymptotically, not even if 20 carbon atoms are in the chain. For monocations, the splittings range from 138 kJ/mol (n = 4) to 68 kJ/mol (n = 20) with BP86 and from 134 kJ/mol (n = 4) to 73 kJ/mol (n = 20) with B3LYP and are thus considerably higher than those of the dications. The spin-state splittings are qualitatively mirrored by the energy splitting between the highest-occupied molecular orbital with beta spin (HOMObeta) and the lowest-unoccupied molecular orbital with alpha spin (LUMOalpha) as obtained in the low-spin state. Furthermore, the HOMOalpha-LUMOalpha gaps decrease as the carbon chain lengthens. In addition, the local distribution of the ?z expectation value is analyzed for the monocation/doublet, the monocation/quartet, and the dication/triplet state using a modified L?wdin partitioning scheme. In the monocation/doublet and the dication/triplet state, the electron spin is distributed mainly on the metal centers and slightly delocalized onto the carbon chain. In the monocation/quartet state for chain lengths of more than 8 carbon atoms, the electron spin is mainly localized on selected atoms of the chain and not on the metal centers. In all cases, the spin delocalization onto the chain increases as the chain gets longer.  相似文献   

15.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应HCCN+NO的二重态反应势能面进行了计算,得到了4种产物:P1(HCN+NCO),P2(OH+NCCN),P3[HCN+(CNO)]和P4(HCN+CNO).其中产物P1为主要产物,P2为次要产物,P3和P4很难得到.在G2(B3LYP/MP2/CC)水平,对产物P1和P2的反应通道的单点能量进行了校正.  相似文献   

16.
The mechanism of light-induced excited spin state trapping (LIESST) of [FeIII(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) was discussed on the basis of potential energy surfaces (PESs) of several important spin states, where the PESs were evaluated with the DFT(B3LYP) method. The PES of the quartet spin state crosses those of the doublet and sextet spin states around its minimum. This means that the spin transition occurs from the quartet spin state to either the doublet spin state or the sextet spin state around the PES minimum of the quartet spin state. The PES minimum of the sextet spin state is slightly less stable than that of the doublet spin state by 0.18 eV (4.2 kcal/mol). This small energy difference is favorable for the LIESST. The doublet-sextet spin crossover point is 0.41 eV (9.6 kcal/mol) above the PES minimum of the sextet spin state. Because of this considerably large activation barrier, the thermal spin transition and the tunneling process do not occur easily. In the doublet spin state, the ligand to ligand charge transfer (LLCT) transition is calculated to be 2.16 eV with the TD-DFT(B3LYP) method, in which the pi orbital of the phenoxy moiety and the pi* orbital of the imine moiety in the pap ligand participate. This transition energy is moderately smaller than the visible light of 550 nm used experimentally. In the sextet spin state, the ligand to metal charge transfer (LMCT) transition is calculated to be at 2.36 eV, which is moderately higher than the visible light (550 nm). These results indicate that the irradiation of the visible light induces the LIESST to generate the sextet spin state but the reverse-LIESST is also somewhat induced by the visible light, indicating that the complete spin conversion from the doublet spin state to the sextet one does not occur, as reported experimentally.  相似文献   

17.
应用量子化学从头计算和密度泛函理论(DFT)对CS分子和NO分子的反应机理进行了研究. 在B3LYP/6- 311G**和CCSD(T)/6-311G**水平上计算了CS分子与NO分子反应的二重态和四重态反应势能面. 计算结果表明, 二重态反应势能面中, CS分子的C端和NO的N端连接是主要的反应方式. 反应物先经过过渡态TS1, 形成具有直线结构的中间体1 (CSNO). 中间体1经过一系列异构化得到主要产物P1 (CO+SN). 此反应是放热反应, 反应热为-183.75 kJ/mol . 而四重态由于反应入口势垒过高, 是不重要的.  相似文献   

18.
用密度泛函B3LYP方法,研究了二重态和四重态势能面自旋禁阻反应Ti^+(^4F,3d^24s^1)+C2H4→TiC2H2^+(^2A2)+H2的微观机理.通过自旋.轨道耦合的计算讨论了势能面交叉点和可能的自旋翻转过程.中间体IM1-^4B2处,四重态和二重态间的旋-轨耦合值为59.3cm^-1.自旋多重度必将发生变化,从四重态系间穿越到二重态势能面形成共价型复合物IM1-^2A1,同时导致四重态势能面的势垒明显降低.到插入中间体IM2后,二重态势能面上有两条不同的反应路径,即分步和协同路径,后者在二重态势能面上得到放热产物TiC2H2^+(^2A2)+H2具有较低的活化势垒,4.52kcal/mol,其主反应路径为:Ti^++C2H4→^4IC→IM1—^4B2→4.2ISC→IM1—^2A1→[^2TSins]→IM2-^2A”→[^2TSMCTS]→IM5→TiC2H2^+(^2A2)+H2.  相似文献   

19.
The epoxidation of ethene by a model for Compound I of cytochrome P450, studied by the use of density functional B3LYP calculations, involves two-state reactivity (TSR) with multiple electromer species, hence "multi-state epoxidation". The reaction is found to proceed in stepwise and effectively concerted manners. Several reactive states are involved; the reactant is an (oxo)iron(IV) porphyrin cation radical complex with two closely lying spin states (quartet and doublet), both of which react with ethene to form intermediate complexes with a covalent C-O bond and a carbon-centered radical (radical intermediates). The radical intermediates exist in two electromers that differ in the oxidation state of iron; Por(+)(*)Fe(III)OCH(2)CH(2)(*) and PorFe(IV)OCH(2)CH(2)(*) (Por = porphyrin). These radical intermediates exist in both the doublet- and quartet spin states. The quartet spin intermediates have substantial barriers for transformation to the quartet spin PorFe(III)-epoxide complex (2.3 kcal mol(-)(1) for PorFe(IV)OCH(2)CH(2)(*) and 7.2 kcal mol(-)(1) for Por(+)(*)Fe(III)OCH(2)CH(2)(*)). In contrast, the doublet spin radicals collapse to the corresponding PorFe(III)-epoxide complex with virtually no barriers. Consequently, the lifetimes of the radical intermediates are much longer on the quartet- than on the doublet spin surface. The loss of isomeric identity in the epoxide and rearrangements to other products arise therefore mostly, if not only, from the quartet process, while the doublet state epoxidation is effectively concerted (Scheme 7). Experimental trends are discussed in the light of the computed mechanistic scheme, and a comparison is made with closely related mechanistic schemes deduced from experiment.  相似文献   

20.
Cobalt(II) diketonate complexes, such as bis[trifluoroacetylacetonato(-1)]cobalt(II) [Co(tfa)(2)], catalyze the aerobic oxidation of alkenols into functionalized tetrahydrofurans. To gain insight into activation of triplet dioxygen by Co(tfa)(2) in a protic solvent, as used in oxidation catalysis, the electronic structure of aquabis[trifluoroacetylacetonato(-1)]cobalt(II)--Co(tfa)(2)(H(2)O)--and the derived dioxygen adduct were characterized using ab initio (CASSCF, NEVPT2) and density functional theory (BP86, TPSSh, B3LYP) methods. The ground state of Co(tfa)(2)(H(2)O) is a high-spin, quartet state. As dioxygen approaches the cobalt atom, the quartet state couples with a triplet dioxygen molecule and forms a sextet, a quartet, and a doublet spin state with the high-spin state being the lowest in energy. At the equilibrium Co-O(2) distance of 1.9 ?, Co(tfa)(2)(H(2)O)(O(2)) has a doublet superoxo Co(III) ground state with the unpaired electron residing on the oxygen moiety, in a nearly unchanged O(2)π* orbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号