首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

2.
5-Fluorenyl complexes of manganese (5-9-RC13H8)Mn(CO)3, where R = Ph (1) and But (2), have been prepared and characterized for the first time. The structure of complex1 has been established by X-ray structural analysis.Yu T. Yanovsky deceased in 1995.Translated fromIZvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 199–203, January, 1996.  相似文献   

3.
《Comptes Rendus Chimie》2002,5(2):137-141
A novel methodology consisting in a selective palladium cross-coupling reaction starting from (η5-chlorocyclohexadienyl)Mn(CO)3 followed by rearomatisation allows the preparation of new cationic (η6-arene)Mn(CO)3 complexes, which cannot be obtained directly from the coordination of the corresponding free arenes.  相似文献   

4.
Reaction of the cluster Os3(μ-CO)(CO)93112-Me3SiC2Me) with HC≡CCOOMe in benzene at 70 °C results in Os3(CO)931122-C(SiMe3)C(Me)C(COOMe)CH× (5), Os3(CO)931122-C(SiMe3)C(Me)C(H)C(COOMe)CH× (6), Os3(CO)9{μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)CH× (7), and Os3(CO)δ31141-C(SiMe3)C(Me)C(H)C(COOMe)× complexes (8), containing an osmacyclopentadiene moiety. Complexes5–8 were characterized by1H NMR and IR spectroscopy. The structure of clusters5 and8 was confirmed by X-ray analysis. Complex7 is formed from cluster5 as a result of a new intramolecular rearrangement and complex8 is obtained by decarbonylation of compound6. Complex8 adds PPh3 to give Os3(CO)δ(PPh3){μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)×.  相似文献   

5.
The reaction of Cr(CO)3(NH3)3 with diphenylacetylene affords as a main product the complex with Cr(CO)3 moiety bound to a phenyl ring of diphenylacetylene; Cr(CO)36-PhC2Ph) (I). Complex I readily reacts with Co2(CO)8 yielding the mixed metal complex Cr(CO)362-PhC2Ph)Co2(CO)6 (II). The reaction proceeds with retention of the Cr(CO)36-arene) structural unit, the Co2(CO)6 fragment being bound to the triple bond of diphenylacetylene in μ22-mode. The structure of II was determined by single crystal X-ray analysis. The complex crystallizes in space group P21/c with unit cell parameters a 8.666(3) Å, b 18.046(3) Å, c 15.155(6) Å. β 97.57(3)°, V 2349(2) Å3, Z = 4, Dx = 1.70 g/cm3. The structure was solved by direct methods and refined by full-matrix least-squares technique to R and Rw values of 0.032 and 0.034, respectively, for 3655 observed reflections. The data obtained show that two structural units in II, Cr(CO)36-Ph-) and Co2(CO)622-CC), are distorted due to steric repulsion between these metal carbonyl moieties. The Cr(CO)3 fragment is shifted from the centre of the phenyl ring and slightly tilted with respect to the phenyl ring plane. The Co2C2 tetrahedron in the Co2(CO)622-CC) moiety is distorted in such a way that two of the four CoiCj bonds are elongated.  相似文献   

6.
Abstract

The kinetics for isomerization of HRu333-EtSCCMeCMe)(CO)9 TO Ru3(μ-SEt) (μ33-CCMeCHMe)(CO)9, were determined. The overall process involves C[sbnd]H elimination, C[sbnd]S and Ru[sbnd]Ru bond cleavage and Ru2(μ-S) bond formation. Activation parameters were determined from the temperature dependence (ΔH? = 127(3) kJ/mol, ΔS?= 56(11) J/mol-K) and from the pressure dependence (0[sbnd]207 MPa, ΔV? 0 +12.7(1.1) cm3/mol, Δβ? = +0.037(0.012) cm3/(mol-MPa)) of the rate constant. The data are consistent with an intramolecular reaction involving significant metal-metal or carbon-sulfur bond cleavage in the transition state. The activation volume is too large to be accommodated by C[sbnd]H elimination alone and CO dissociation is not involved.  相似文献   

7.
The electron distributions and bonding in Ru3(CO)9( 3- 2, 2, 2-C6H6) and Ru3(CO)9( 3- 2, 2, 2-C60) are examined via electronic structure calculations in order to compare the nature of ligation of benzene and buckminsterfullerene to the common Ru3(CO)9 inorganic cluster. A fragment orbital approach, which is aided by the relatively high symmetry that these molecules possess, reveals important features of the electronic structures of these two systems. Reported crystal structures show that both benzene and C60 are geometrically distorted when bound to the metal cluster fragment, and our ab initio calculations indicate that the energies of these distortions are similar. The experimental Ru–Cfullerene bond lengths are shorter than the corresponding Ru–Cbenzene distances and the Ru–Ru bond lengths are longer in the fullerene-bound cluster than for the benzene-ligated cluster. Also, the carbonyl stretching frequencies are slightly higher for Ru3(CO)9( 3- 2, 2, 2-C60) than for Ru3(CO)9( 3- 2, 2, 2-C6H6). As a whole, these observations suggest that electron density is being pulled away from the metal centers and CO ligands to form stronger Ru–Cfullerene than Ru–Cbenzene bonds. Fenske-Hall molecular orbital calculations show that an important interaction is donation of electron density in the metal–metal bonds to empty orbitals of C60 and C6H6. Bonds to the metal cluster that result from this interaction are the second highest occupied orbitals of both systems. A larger amount of density is donated to C60 than to C6H6, thus accounting for the longer metal–metal bonds in the fullerene-bound cluster. The principal metal–arene bonding modes are the same in both systems, but the more band-like electronic structure of the fullerene (i.e., the greater number density of donor and acceptor orbitals in a given energy region) as compared to C6H6 permits a greater degree of electron flow and stronger bonding between the Ru3(CO)9 and C60 fragments. Of significance to the reduction chemistry of M3(CO)9( 3- 2, 2, 2-C60) molecules, the HOMO is largely localized on the metal–carbonyl fragment and the LUMO is largely localized on the C60 portion of the molecule. The localized C60 character of the LUMO is consistent with the similarity of the first two reductions of this class of molecules to the first two reductions of free C60. The set of orbitals above the LUMO shows partial delocalization (in an antibonding sense) to the metal fragment, thus accounting for the relative ease of the third reduction of this class of molecules compared to the third reduction of free C60.  相似文献   

8.
9.
Irradiation of CpMn(CO)3 in liquid ethane at 135 K at 355 nm yields a photoproduct that exhibits ν(CO) bands in the IR spectrum shifted to low wavenumber with respect to CpMn(CO)3 that are indicative of a Mn(i) dicarbonyl. Parallel experiments employing in situ irradiation within an NMR probe (133 K, 355 nm photolysis) reveal the 1H NMR signals of this product and confirm its formulation as the σ-ethane complex CpMn(CO)22-C1–H-ethane). The resonance of its coordinated C–H group is observed at δ –5.84 and decays with lifetime of ca. 360 s. Analogous photolysis experiments in isopentane solution with IR detection produce CpMn(CO)22-CH-isopentane) with similar IR bands to those of CpMn(CO)22-CH-ethane). 1H NMR spectra of the same species were obtained by irradiation of CpMn(CO)3 in a 60 : 40 mixture of propane and isopentane; three isomers of CpMn(CO)22-CH-isopentane) were detected with coordination of manganese at the two inequivalent methyl positions and at the methylene group, respectively. The lifetimes of these isomers are ca. 380 ± 20 s at 135 K and do not vary significantly from each other. These σ-complexes of manganese are far more reactive than those of related CpRe(CO)2(alkane) complexes which are stable in solution at 170–180 K. The room temperature lifetimes of CpMn(CO)22-CH-ethane) and CpMn(CO)22-CH-isopentane), as determined by TRIR spectroscopy, are 2.0 ± 0.1 and 28 ± 1 μs, respectively.  相似文献   

10.
Diyne FcCmCC.CFc (Fc is ferrocenyl) reacts with Ru3(CO)12 in boiling hexane to yield binuclear complexes Ru2 and Ru2(CO)6(C4Fc2(C=CFc)2C=O) containing ruthenacyclopentadiene and diruthenacycloheptadienone rings, respectively. The isomerism of the complexes is due to the different ways of coupling of the alkyne fragments of the diyne, namely, head-to-head, head-to-tail or tail-to-tail. The reaction of enyne PhC=CCH=CHPh with Ru3(CO)12 under similar conditions gives isomeric binuclear complexes Ru2(CO)6(C4Ph2(CH=CHPh)2) and trinuclear clusters Ru3(CO)6(w-CO)2(C4Ph2(CH=CHPh)2) and Ru3(CO)8(3-,1-1-4-2 C4Ph2(CH=CHPh)2). The structure of the latter was determined by X-ray diffraction analysis. The Ru3 triangle coordinates eight terminal CO groups and the organic ligand resulting from the head-to-head dimerization of enyne molecules; the ruthenacyclopentadiene moiety is 4-coordinated to the Ru(CO)2 group, and the third ruthenium atom is 2-bound to one of the PhCH=CH groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1261–1267, May, 1996.  相似文献   

11.
The reaction of 5-IC5H4(CO)2Fe-1,5-C5H4Mn(CO)3 with Me3SiCCSiMe3 (2 : 1) in the presence of Pd(MeCN)2Cl2 afforded the I(CO)2Fe(C5H4—C5H4)Mn(CO)3 complex generated through migrations of the I atom from the Cp ring to the Fe atom and of the C5H4Mn(CO)3 group from the Fe atom to the Cp ring.  相似文献   

12.
Wang  Mei  Miguel  Daniel  Riera  Víctor  Bois  Claudette  Jeannin  Yves 《Transition Metal Chemistry》2001,26(4-5):566-569
A novel dimolybdenum complex [(3-C3H5)(CO)2Mo(-S2CPCy3)Mo(3-CH2CMeCH2)(CO)2], obtained by reacting the [(CO)2(3-C3H5)Mo(-S2CPCy3)Mo(CO)3] anion with an excess of ClCH2CMe=CH2, has been characterized by i.r., 31P{1H}, 1H- and 13C-n.m.r. spectroscopy and by elemental analysis. The crystal structure of the complex, determined by X-ray diffraction, shows a definite preference for the central carbon of the S2CPCy3 bridge to bind to the Mo(2) atom coordinated by 3-2-methylallyl, rather than the Mo(1) atom attached to unsubstituted 3-allyl ligand.  相似文献   

13.
The nature of the lowest energy optical transition for the complexes (η(6)-naphthalene)Cr(CO)(3) and (η(6)-phenanthrene)Cr(CO)(3) in the solid state has been investigated by Raman spectroscopy using a range of different excitation wavelengths progressively approaching the resonant condition. Examination of the resonantly enhanced Raman modes confirms that the first absorption is attributed predominantly to a metal-to-arene charge transfer transition for both complexes. A notable difference in the photochemistry of the two complexes was observed. In the case of the phenanthrene complex, population of the lowest energy excited state leads to a photochemical process which resulted in the loss of the arene ligand and formation of Cr(CO)(6).  相似文献   

14.
The complexes Pt(nb)3-n(P-iPr3)n (n=1, 2, nb=bicyclo[2.2.1]hept-2-ene), prepared in situ from Pt(nb)3, are useful reagents for addition of Pt(P-iPr3)n fragments to saturated triruthenium clusters. The complexes Ru3Pt(CO)11(P-iPr3)2 (1), Ru3Pt(-H)(3-3-MeCCHCMe)(CO)9(P-iPr3) (2), Ru3Pt(3-2-PhCCPh)(CO)10(P-iPr3) (3), Ru3Pt(-H)(4-N)(CO)10(P-iPr3) (4) and Ru3Pt(-H)(4-2-NO)(CO)10(P-iPr3) (5) have been prepared in this fashion. All complexes have been characterized spectroscopically and by single crystal X-ray determinations. Clusters 1–3 all have 60 cluster valence electrons (CVE) but exhibit differing metal skeletal geometries. Cluster 1 exhibits a planar-rhomboidal metal skeleton with 5 metal–metal bonds and with minor disorder in the metal atoms. Cluster 2 has a distorted tetrahedral metal arrangement, while cluster 3 has a butterfly framework (butterfly angle=118.93(2)°). Clusters 4 and 5 posseses 62 CVE and spiked triangular metal frameworks. Cluster 4 contains a 4-nitrido ligand, while cluster 5 has a highly unusual 4-2-nitrosyl ligand with a very long nitrosyl N–O distance of 1.366(5) Å.  相似文献   

15.
Evolved gas analysis?Cion-attachment mass spectrometry (EGA?CIAMS) indicates that Mn(CO)5 and Mn2(CO)9 free radicals are produced in the gas phase by pyrolysis of Mn2(CO)10 in an infrared image furnace. The Li+-adduct mass spectra of the pyrolysis products contained peaks at m/z 202 and 369 for Mn(CO)5Li+ and Mn2(CO)9Li+, respectively, providing direct evidence that d-metal complex radicals were formed in the furnace. We studied the effect of temperature on the rate of production of the radicals, and confirmed the presence of the compounds Mn(CO)5 and Mn2(CO)9, which were reported in earlier studies based on electron-impact mass spectrometry, electron spin resonance spectroscopy, and Fourier transform infrared spectroscopy.  相似文献   

16.
Although the palladium-catalyzed Tsuji-Trost allylic substitution reaction has been intensively studied, there is a lack of general methods to employ simple benzylic nucleophiles. Such a method would facilitate access to "α-2-propenyl benzyl" motifs, which are common structural motifs in bioactive compounds and natural products. We report herein the palladium-catalyzed allylation reaction of toluene-derived pronucleophiles activated by tricarbonylchromium. A variety of cyclic and acyclic allylic electrophiles can be employed with in situ generated (η(6)-C(6)H(5)CHLiR)Cr(CO)(3) nucleophiles. Catalyst identification was performed by high throughput experimentation (HTE) and led to the Xantphos/palladium hit, which proved to be a general catalyst for this class of reactions. In addition to η(6)-toluene complexes, benzyl amine and ether derivatives (η(6)-C(6)H(5)CH(2)Z)Cr(CO)(3) (Z = NR(2), OR) are also viable pronucleophiles, allowing C-C bond-formation α to heteroatoms with excellent yields. Finally, a tandem allylic substitution/demetalation procedure is described that affords the corresponding metal-free allylic substitution products. This method will be a valuable complement to the existing arsenal of nucleophiles with applications in allylic substitution reactions.  相似文献   

17.
Xu  Feng  Sun  Wen-Hua  Yang  Shi-Yan  Yin  Yan-Qi  Wu  Qin-Jin  Yu  Kai-Bei 《Transition Metal Chemistry》1997,22(2):176-179
HFe2Co(CO)9(3-S) reacts with (5-Cp)Mo(CO)3Cl in refluxing THF to give heterometallic trinuclear clusters (5-Cp)MoFeCo(CO)8(3-S) and [(5-Cp)Mo]2Fe(CO)7-(3-S), which have been characterized by elemental analyses, i.r., 1H- and 13C-n.m.r. and X-ray crystal structure determination. An electrophilic addition–elimination sequence is proposed for their formation.  相似文献   

18.
Co2(CO)8与4个二硫代双(烷基硫代甲酰胺)类前配体[R2NC(S)S]2反应,得4个含烷基硫代甲酰胺基的三核钴羰基硫簇合物.通过元素分析、IR、1H NMR和MS等方法表征了它们的结构,用X射线衍射法测定了其中一个簇合物Co3(CO)7(μ3-S)[μ,η2-SCN(i-Pr)2](Ⅲ)的晶体结构.晶体属单斜晶系,P21/n空间群,晶胞参数a=1.145 2(2)nm,b=1.502 8(3)nm,c=1.2144(2)nm,a=90°,β=92.15(3)°,γ=90°,V=2.088 5(7)nm3,Z=4,F(000)=1 096,Dc=1.747 mg·m-3,GOF(F2)=0.835,μ=2.588 nm-1.最终因子R[I>2σ(I)]=0.040 7,Rw=0.062 4.  相似文献   

19.
Marken  Frank  Marx  Hans -W.  Englert  Ulli 《Structural chemistry》1994,5(3):177-181
The substituted sandwich complex crystallizes in monoclinic space groupP21/m withZ=2. Twinning to the (001) direction with the special conditionc */4a * = cos * causes systematic superposition of the reciprocal lattices of both domains and results in an apparent unit cell with double volume and the reflection condition (2h)kl, l=2n. The structure solution was obtained with the subset of intensity data for the predominant individuum and converged atR = 0.040,R w =0.046 for 832 independent observations and 122 variables. The molecules show disorder with respect to the crystallographic mirror plane. The structure is closely related to that of decamethylruthenocene.  相似文献   

20.
Tetrakis(di-tert-butylmethylsilyl)tetragermacyclobutadiene]ruthenium tricarbonyl [η4-(But 2MeSi)4Ge4]Ru(CO)3 is synthesized. This analogue of well-known cyclobutadiene transition metal complexes bears a tetragermacyclobutadiene derivative as ligand. The structure and spectroscopic parameters of the complex are compared with those of its iron-containing analogue [η4-(But 2MeSi)4Ge4]Fe(CO)3. Based on experimental data and results of quantum chemical calculations, it is shown that the π-donating ability of ligands increases upon replacement of carbon atoms in the cyclobutadiene moiety by silicon or germanium atoms, tetrasilacyclobutadiene and tetragermacyclobutadiene being comparable in π-donating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号