首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The convergence of the cluster model with respect to excitation energies, ionization potentials and hydrogen chemisorption energy in the four-fold hollow site of the Ni(100) surface is studied for a sequence of cluster models from Ni5 up to Ni181. For the largest, Ni481, cluster studied, only the structure of the occupied levels for one state is obtained. The concept of bond-preparation is found to be essential for the evaluation of chemisorption energies also for clusters with more than 100 atoms. The cluster excitation energies show a slow decrease such that even for Ni181 the step between the lower excited states is still 0.1–0.2 eV. The effect ofp-functions on surrounding cluster atoms is found to be 3–4 kcal/mol independent of cluster-size. The direct SCF program DISCO was parallelized using the TCGMSG toolkit in order to perform the calculations. The easy strategy utilized is analysed and exhaustive timings on the Alliant Campus/800 MPP system with 200 CPU's are presented.  相似文献   

2.
3.
We perform ab initio calculations to investigate Ni13 clusters reaction under an oxygen atmosphere. We dynamically evaluate the effect on structural, electronic, and magnetic properties for pristine and oxidated clusters. As oxygen chemisorption increases, the pristine icosahedral cluster tends to adopt a cubic sodium chloride configuration, resistant to further oxidation. Although each chemisorbed O atom draws one electron, the cluster magnetization stays in the 4-8 μ B range, with magnetic moment localized at Ni atoms. Oxygen effect on the electronic structure is to hybridize O(p) − Ni(s, d) among low-lying occupied states and to induce a HOMO-LUMO gap opening, while also shifting downwards the electronic band edges, making them favorably aligned with photocatalytic reactions.  相似文献   

4.
Spin-polarized linear combinations of Gaussian-type orbital–model core potential–local spin density (LCGTO –MCP –LSD ) computations have been performed for oxygen chemisorption on a Ni(100) surface simulated by four different clusters. Results show that the oxygen atom chemisorbs preferentially on the fourfold hollow site with an equilibrium distance of 1.931 Å and a vertical vibrational frequency of 401 cm?1. The corresponding experimental values are 1.960 Å and 423 or 430 cm?1. A satisfactory agreement with experiment is also found for the adsorption energy (6.7 vs. 5.6 eV). The bridge position lies at only 0.4 eV above the fourfold hollow one. It is found that oxygen adsorption leaves the bare cluster total spin magnetic moment unchanged, but induces appreciable reductions of the local atomic moment on the surface nickel atoms. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Adsorption of pyridine on Nin‐clusters (with n = 2,3,4) is studied by quantum chemical calculations at B3LYP/LANL2DZ and B3LYP/6‐311G** levels. First, Nin‐clusters are investigated for accessible structure and electronic states. The lowest electronic state with four unpaired electrons is predicted for Ni4‐cluster based on geometry and electronic structure, showing that the cluster stability nicely depends on number of unpaired electrons. Correction for basis set superposition error of metal‐metal bond is appreciable and has increasing effect on cluster binding energy. Next, adsorption of pyridine in planar and vertical adsorption modes is investigated on rhombus Ni4‐cluster. The vertical mode is found (at B3LYP/6‐311G** level) as the most favorable adsorption mode. Adsorption energy (ΔEads) depends on cluster size; adsorption on Ni4‐cluster is most favorable with ΔEads = ?207.33 kJ/mol. The natural bond orbital analysis reveals the charge transfer in adsorbate/metal‐cluster. Results of investigations for the Ni2‐ and Ni3‐cluster are also presented. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Atomic chemisorption of hydrogen and oxygen on the Ni(100) surface has been studied using an Effective Core Potential (ECP) approach described in a previous paper. Clusters of up to 50 nickel atoms have been used to model the surface. The computed chemisorption energies are 62 kcal/mol (exp. 63 kcal/mol) for hydrogen and 106 kcal/mol (exp. 115–130 kcal/mol) for oxygen. Correlating the adsorbate and the cluster-adsorbate bonds is extremely important for obtaining accceptable results, particularly for oxygen. Reasonable convergence of chemisorption energies is obtained with 40–50 cluster atoms for both hydrogen and oxygen. For hydrogen the addition of a third cluster layer stabilizes the results considerably. Both hydrogen and oxygen are adsorbed at (or close to) the four-fold hollow site. The calculated barriers for surface migration are also in good agreement with the experimental estimates. The calculated equilibrium heights above the surface are on the other hand too high compared with experiments. This disagreement is believed to be due to core-valence correlation effects, which are not incorporated in the present ECP. The cluster convergence for the height above the surface is much slower than for the chemisorption energy.  相似文献   

7.
The mechanism of ethylene epoxidation on Ag surfaces has been investigated using the density functional method and Ag n clusters (n = 3 to 10) modeling the Ag(111) surface. The adsorption energy of O2 to the Ag clusters was strongly dependent on the HOMO level of the cluster, and the clusters with higher HOMO levels afforded larger O2 adsorption energies. The energetics was investigated for both the molecular and atomic oxygen epoxidation mechanisms. For the atomic oxygen mechanism, epoxidation was found to proceed without an activation energy, whereas a small amount of activation energy (about 5 kcal/mol) was calculated for the molecular oxygen mechanism. Received: 2 July 1998 / Accepted: 9 September 1998 / Published online: 8 February 1999  相似文献   

8.
Complete active space SCF and contracted CI calculations have been performed on the potential surface of the Ni2-C2H4 complex in the singlet state. The ethene geometry and position relative to Ni2 was optimized while the Ni-Ni distance was kept fixed at 2.5 Å.Four possible symmetric geometric arrangements were considered, yielding only an end on -bonded structure as bound. This is a consequence of the charge buildup between the nickel atoms and charge depletion at the ends, coupled with electron mobility along the bond axis, in the nickel dimer.The energy minimum corresponds to a C2H4 moiety distorted 21% towards a C2H6 geometry, with a bond energy o 24.6 kcal/mol at the CCI level and 28.1 kcal/mol with cluster corrections included. The binding is described by a donation backdonation mechanism. These results are discussed in connection with earlier work on Ni(C2H4) and Ni2(C2H4) and in connection with experimental work.  相似文献   

9.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(111) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC(001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(111) when compared to Ni(111). To design cheaper and better catalysts, reducing the N recombination barrier by modifying Ni/WC(001) is a critical question to be solved.  相似文献   

11.
Using the generalized gradient approximation to density functional theory (DFT), molecular and dissociative oxygen adsorptions on a Pu (111) surface has been studied in detail. Dissociative adsorption with a layer‐by‐layer alternate spin arrangement of the plutonium layer is found to be energetically more favorable, and adsorption of oxygen does not change this feature. Hor1 (O2 is parallel to the surface and lattice vectors) approach on the center2 (center of the unit cell, where there is a Pu atom directly below on the third layer) site, both without and with spin polarization, was found to be the preferred chemisorbed site among all cases studied with chemisorption energies of 8.365 and 7.897 eV, respectively. The second‐highest chemisorption energy occurs at the Ver (O2 is vertical to the surface) approach of the bridge site with chemisorption energies of 8.294 eV (non‐spin‐polarized) and 7.859 eV (spin‐polarized), respectively. We find that 5f electrons are more localized in the spin‐polarized case than the non‐spin‐polarized counterparts. Localization of the 5f electrons is higher in the oxygen‐adsorbed plutonium layers compared with the bare layers. The ionic part of O? Pu bonding plays a significant role in the chemisorption process, along with Pu 5f? O 2p hybridization. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
More than one hundred models were designed to reflect the local structure and electronic property of Ni-Fe amorphous alloys. After calculating by DFF method, a series of configurations of clusters NixFe and NiFex (x = 1 - 5) were gained. The configurations, which possessed the lowest energies and non-imaginary frequencies, were considered the most stable optimized structures. The catalytic activity, charge and magnetic properties were analyzed and discussed. The different Fe content changed the catalytic properties of clusters through altering the value of Fermi level of every cluster. However the density of state (DOS) nearby Fermi level and average 3d orbital population of atom Ni, which were also important properties related to the catalytic activation, were little changed. Based on the Fermi level, the activity of catalyst toward hydrogenation reaction would be considered best when the ratio of Ni to Fe was close to 1. The Fermi level of clusters was far distant to the level of nitrogen in singlet state. It would be the reason why the reaction condition in ammonia synthesis and nitrogen fixation process was rigorous. When Fe atom contents were higher than 75% (NiFe3), the electrons transferred from atom Fe to Ni, but when the ratio was decreased, the transfer was reversed. The ratio of atoms of local structure also played an important role in the aspect of electron transition. On the average 3d orbital population of atom Fe, the average magnetic moments of Fe atoms in clusters were calculated. When Fe atom contents were 50% nearly, the average magnetic moment achieved the highest point.  相似文献   

13.
The hydroxide (OH) binding on Ni4 clusters supported on the (5, 5) ultra-small carbon nanotubes (CNTs) with lattice vacancies is theoretically investigated by applying the density functional theory (DFT) method. All Ni4 clusters are strongly adsorbed on the (5, 5) ultra-small CNTs with lattice vacancies and formed very stable Ni4/Vn structures. The results show that the OH binding energy (OHBE) at a Ni site nearly increases linearly with increasing Ni d band center. On the other side, this OHBE also increases as the number of vacancies increases. These findings could be attributed to interactions with carbon dangling bonds, which alter the electronic structure of the CNT-supported Ni4 clusters. Furthermore, an unusual behavior is observed for a Ni4 cluster supported on the (5, 5) ultra-small without a vacancy, where its OHBE is noticeably stronger than the others. These assertions are also supported by the projected crystal orbital overlap population (pCOOP), the projected crystal overlap Hamiltonian population (pCOHP), and the Mulliken–Löwdin analyses, which confirm the presence of bonding, anti-bonding, and non-bonding of OH states on Ni4/Vn. As a result, we can conclude that OH strongly binds to all Ni4/Vn. Adjusting OHBE tolerance to the Ni4 clusters is regarded as evidence of the CNT support effect, resulting in an increase in the activity of the hydrogen oxidation reaction (HOR) catalyst in an alkaline environment. It is necessary to make the high performance of the Ni cluster catalysts.  相似文献   

14.
The bonding and configuration of the chemisorption of NH_3 at the on-top and hollow sites of Ni(111) surfaces are calculated and discussd by use of MO theory and energy band theory. The results show that the density of state and crystal orbital overlap population of the adsorption state at the on-top site have superiority over those of hollow site.  相似文献   

15.
本文用X_a-DV方法研究了NH_3和其分解中间体NH在Ni(111)表面的化学吸附及与表面的相互作用, 包括结合能、基态能级、电荷转移、成键特性和总态密度。  相似文献   

16.
Studying the structures of metal clusters on oxide supports is challenging due to their various structural possibilities. In the present work, a simple rule in which the number of Au atoms in different layers of Aux clusters is changed successively is used to systematically investigate the structures of Aux (x=1–10) clusters on stoichiometric and partially reduced CeO2(111) surface by DFT calculations. The calculations indicate that the adsorption energy of a single Au atom on the surface, the surface structure, as well as the Au? Au bond strength and arrangement play the key roles in determining Aux structures on CeO2(111). The most stable Au2 and Au3 clusters on CeO2(111) are 2D vertical structures, while the most stable structures of Aux clusters (x>3) are generally 3D structures, except for Au7. The 3D structures of large Aux clusters in which the Au number in the bottom layer does not exceed that in the top layer are not stable. The differences between Aux on CeO2(111) and Mg(100) were also studied. The stabilizing effect of surface oxygen vacancies on Aux cluster structures depends on the size of Aux cluster and the relative positions of Aux cluster and oxygen vacancy. The present work will be helpful in improving the understanding of metal cluster structures on oxide supports.  相似文献   

17.
Introduction Atom adsorption on transition metal surfaces has attracted special attention as a base for understanding the fundamental processes of oxidative catalysis. Particularly interesting is the adsorption and diffusion of oxygen on well-defined metal surfaces. An oxygen covered palladium surface, for example, plays a central role in several important reactions such as oxidation of carbon monoxide and ammonia. In particular, the (100), (111), (110) surfaces and the interactions with oxyge…  相似文献   

18.
刁兆玉  于帅芹  王泽新  乔青安 《化学学报》2004,62(21):2136-2142
应用原子和表面簇合物相互作用的5参数Morse势方法(简称5-MP)构造了S-Ni表面簇合物体系的解析势函数.首先对S-Ni低指数表面体系进行了研究,并获得了全部临界点性质.计算结果表明:硫原子在Ni(100)面上的稳定吸附态为四重洞位,在Ni(111)面上,硫原子吸附于三重位,硫原子在Ni(110)面上的吸附位有所变化.第一与第二周期的原子在(110)面上的稳定吸附态大都为赝式三重位和长桥位,而硫原子却吸附在Ni(110)面的四重洞位.理论分析结果和实验推测结果符合得很好.同时,还对S-Ni(311)台阶面吸附体系进行了研究.理论结果表明:S-Ni(311)表面吸附体系只存在四重吸附态和hcp三重吸附态,fcc三重吸附态在和四重吸附态的竞争中完全湮灭.对于S-Ni表面吸附体系,理论结果给出S原子的表面吸附结合能和表面簇合物的粗糙度有关.结合能从小到大的顺序为(111)<(100)<(110)<(311).  相似文献   

19.
Surface structures and electronic properties of hypophosphite H2PO2^- on Ni(111) and Ag(111) surfaces were investigated by means of density functional theory at B3LYP/6-31 + +G(d,p) level. The most stable structure was that in which the H2PO2^- adsorbs with its two P--O bonds faced to the substrate surface. The results of the Mulliken population analysis showed that because of the subtle difference of electron configuration, the adsorption energy was larger on the Ni surface than on the Ag surface, and the amounts of both donation and back donation were larger on the Ni(111) surface than on the Ag(111) surface. There were more negative Mulliken charge transfer from H2PO2^- to substrate clusters on Ni surface than on Ag surface and more positive Mulliken charges on P atom in Ni4H2PO2^- than in Ag4H2PO2^-, which means that P atom in Ni4H2PO2^- is easily attacked by a nucleophile such as OH . Thus, H2PO2^- is more easily oxidated on Ni(111) surface than on Ag(111) suface. These results indicated that the silver surface is inactive for the oxidation reaction of the hypophosphite anion.  相似文献   

20.
李艳秋  刘淑萍  郝策  王泽新  邱介山 《化学学报》2009,67(23):2678-2684
应用原子与表面簇合物相互作用的五参数Morse势(5-MP)方法对氢原子在Ni(111)表面和次表面以及Ni(211), (533)台阶面进行了系统研究, 得到了氢原子在上述各面的吸附位、吸附几何、结合能和本征振动频率. 计算结果表明, 在Ni(111)面上, 氢原子优先吸附在三重位, 随着覆盖度的增加会吸附在次表面八面体位和四面体位. Ni(211), (533)的最优先吸附位都是四重位, 当氢原子的覆盖度增大时占据(111)平台的三重吸附位. 靠近台阶面的吸附位受台阶和平台高度的影响很大. 此外, 我们计算了氢原子在各表面的不同吸附位的扩散势垒, 获得氢原子在各表面的最低能量扩散通道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号