首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过Brookfield粘度测定及室内岩心驱油试验评定,研究了聚(丙烯酰胺-丙烯酸)/聚(丙烯酸胺-二甲基二烯丙基氯化铵)[P(AM-AA)/P(AM-DMDAAC)]分子复合型聚合物驱油剂的增粘、抗温、抗盐性及其驱油效果.结果表明:聚合物组成一定时,其复合比影响溶液复合增粘效果;复合型聚合物溶液的抗盐性明显优于P(AM-AA)溶液的抗盐性;多价金属离子的加入是提高溶液抗盐性的有效途径.该驱油剂的最终采收率达61.91%.  相似文献   

2.
分子复合法制备新型聚合物驱油剂CMC/P(AM-DMDAAC)   总被引:6,自引:0,他引:6  
通过具有互补结构的阴离子聚合物羧甲基纤维素(CMC)与阳离子聚合物聚(丙烯酰胺-二甲基二烯丙基氯化铵)[P(AM-DMDAAC)]间的聚电解质分子复合作用,制备了分子复合型CMC/P(AM-DMDAAC)新型驱油剂.电导率测定及紫外光谱分析结果表明,CMC与P(AM-DMDAAC)可以在水相通过库仑力形成均相聚电解质复合溶液.由于分子复合形成的独特超分子结构,复合溶液粘度显著增加,分别为组分聚合物溶液的5.2倍和9.0倍,在高温和高剪切环境中的粘度保持能力也明显优于其组分聚合物.  相似文献   

3.
The association of cetyltrimethylammonium bromide, CTAB, with a series of P(MMAx-co-SSNa) random copolymers of sodium styrene sulfonate (SSNa) with methyl methacrylate (MMA) was explored in aqueous solution as a function of the MMA molar content, x, of the copolymers. The polyelectrolyte/surfactant complexation in aqueous solution was verified through pyrene fluorescence probing. In addition, turbidimetry studies in dilute or more concentrated aqueous solutions elucidated the phase separation behavior of the P(MMAx-co-SSNa)/CTAB systems as a function of the copolymer composition x and the surfactant to polyelectrolyte mixing charge ratio. It is found that practically phase separation is completely suppressed within the studied mixing range when the MMA content of the copolymers is ~30-40 mol%. For lower MMA contents the polyelectrolyte/surfactant complex separates out from water, while for higher x values the solubility limits of the copolymers in water are attained. For the intermediate MMA contents, viscoelastic systems are obtained in more concentrated polymer/surfactant solutions provided that the polyelectrolyte is fully complexed with the cationic surfactant ((1)H NMR results). Moreover, the (1)H NMR studies indicate that hybrid P(MMAx-co-SSNa)/CTAB wormlike micelles are formed in water under these conditions. Finally, it is shown that addition of salt prevents syneresis problems and facilitates the rheological investigation.  相似文献   

4.
The nonaqueous solution behavior of random copolymers of styrene (ST) with sodium-2-acrylamido-2-methylpropane sulfonate (Na-AMPS) [poly(ST-Na-AMPS)] has been investigated using the transient electric birefringence (TEB) technique. The copolymers with varying high sulfonate contents (about 30–70 mol%), bridging the gap between conventional ionomers and classical polyelectrolytes, were dissolved in the solvent methylformamide (MFA) with a high permittivity ? of ca. 190. The solutions showed a negative birefringence at electric field strength E of the order of kV/cm. A typical Kerr effect was observed at low polymer concentrations C of ca. 10?3g/mL and electric field strengths of the order of kV/cm. However, the detailed, TEB studies demonstrated different behavior at two concentration regimes in dilute solution. At a low concentration regime (e.g., C ≤ 1 × 10?3g/mL for the copolymer with a 66.7 mol % sulfonate content) where the reduced viscosity exhibited a pronounced polyelectrolyte effect, the birefringence signal pattern showed a maximum before reaching a steady value. Additionally, during the rise at an applied electric field strength beyond a threshold value, it was observed that the nonexponential field-free decay was slower than the single exponential field-induced rise. The observed anomalous behavior was similar to those of a polyelectrolyte [sodium poly (styrene sulfonate)] in aqueous solution and might be attributed to the perturbation of the molecular shape by the applied electric field. At the higher concentration regime (e.g., C ≥ 4 × 10?3g/mL for the same copolymer with a 66.7 mol % sulfonate content) where the polyelectrolyte effects started to diminish as indicated by the viscosity study, the birefringence shape showed no variation with an increased electric field strength and the field-free decay turned out to be faster than the single exponential rise. The dissociation of ionic aggregates was tentatively interpreted to be responsible for this observation. It seems that by simply varying the polymer concentration, poly (ST-Na-AMPS) could behave either as a polyelectrolyte or as an ionomer in a single polar organic solvent.  相似文献   

5.
Interactions of water-soluble AB block copolymers of polystyrene and poly(ethylene oxide) with sodium lauryl sulfate (SLS) in aqueous solution were investigated by high-resolution proton magnetic resonance (NMR). The viscosity in aqueous SLS solution was also measured. From the NMR results in D2O, it appears that molecular motions of the polystyrene blocks of the copolymer in aqueous solution are activated by interaction between the polystyrene blocks and the added SLS. From solution viscosity, on the other hand, it is apparent that a complex is formed between the copolymer and SLS and that it exhibits typical polyelectrolyte properties. The polyelectrolyte character is attributable largely to intrachain repulsions between like charges of the SLS anions adsorbed on the poly(ethylene oxide) blocks of the copolymers since the polystyrene blocks are insoluble in water and the styrene content is less than 10%.  相似文献   

6.
The basic feature of polymers is their multi-order structure. Structure change at each level offers a possibility tomodify polymer properties and to develop new polymer materials. Therefore,novel polymer materials can be developed by tailoring their chain structure through chemical bonding among atoms, i.e., via the traditional molecular chemistry methods, e.g., polymerization of new monomer, controlling chain length (molecular weight and molecular weight distribution) and stereoregularity, copolymerization of different kinds of monomers, controlling sequence distribution,block of graft length of copolymer, etc., which have been the focus of polymer chemistry for several decades, as well as by tailoring specific supramolecular architecture using molecules as building block through intermolecular interactions, i.e., via supramolecular science methods, e.g., molecular self-assembly, intermacromolecular complexation, etc., which is a modern and fast-developing academic research field.This paper reports novel polymer materials prepared through intermacromolecular complexation,e.g., a new polymer solid electrolyte poly(metyl methacrylate-methacrylic acid)[P(MMA-MAA)]/poly(ethylene oxide) (PEO)/A2-LiClO4 developed by intermacromolecular complexation through hydrogen bonding, which has enhanced ambient ionic conductivity and fairly good mechanical and film-forming properties, a new polymer microcomposite poly(acrylonitrile-acrylamide-acrylic acid) [P(AN-AM-AA)]/poly(vinyl alcohol) (PVA) reinforced by the twin molecular chain microfibrils formed through intermacromolecular complexation of P(AN-AM-AA) with PVA through hydrogen bonding, which exhibits much better mechanical properties than its constituents and could be used to manufacture PVA based complexed fibers with higher modulus and better dyeability, a new polymer flooding agent poly(acrylamide-acrylic acid)[P(AM-AA)]/poly(acrylamide- dimethyldiallylammonium chloride) [P(AM-DMDAAC)] developed by intermacromolecular complexation of the oppositely charged polyions through Coulomb forces,which shows much higher viscosity and better resistance to temperature, shear rate and salt than its constituents, and has potential application in enhanced oil recovery.  相似文献   

7.
Abstract

Nylon 66 (N66) copolymers were prepared by melt polycondensation of adipic acid and hexamethylenediamine with 5–80 mol% poly(ethylene glycol) (PEG), where the molecular weight (MW) of PEG was 200–1000. The reduced specific viscosity of the copolymers was increased by the copolymerization. The crystallinity and melting temperature (T m) of N66 components decreased with increasing PEG content, but T m depression of copolymers at the same mole content decreased with increasing MW of PEG, suggesting that the copolymer structures are not of the random type but of the block type at the higher MW of PEG. The water absorption increased with increasing PEG content, and its increase was much higher at the higher MW of PEG. The enzymatic degradation was estimated by the weight loss of copolymer films in the buffer solution with and without a lipase at 37°C. The weight loss was enhanced appreciably by the presence of a lipase, and increased abruptly at higher PEG content, which was correlated to water absorption and the concentration of ester linkages. The enzymatic degradation of these N66 copolymers was much higher than that of previously reported PET copolymers with PEG. The abrupt increase of weight loss by alkali hydrolysis was fairly comparable to that of water absorption.  相似文献   

8.
通过动态光散射、粘度和透光率测定,研究了聚(丙烯酰胺 丙烯酸)[P(AM AA)]/聚(丙烯酰胺 二甲基二烯丙基氯化铵)[P(AM DMDAAC)]聚电解质复合溶液的结构和性能.结果表明,P(AM AA)与P(AM DMDAAC)复合比、溶液浓度和氯化钠用量影响溶液中复合物的构象和流体力学半径.P(AM AA)与P(AM DMDAAC)分子链间适度的库仑相互作用,可形成均相P(AM AA)/P(AM DMDAAC)聚电解质复合溶液,复合物具有较伸展的构象和较大的流体力学半径,因而溶液粘度较高.P(AM AA)与P(AM DMDAAC)分子链间过强的库仑相互作用或小分子电解质的屏蔽作用,可使复合物构象卷曲,结构紧缩,流体力学半径减小,甚至产生相分离,导致溶液粘度降低.  相似文献   

9.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   

10.
The formation of polyelectrolyte complexes of linear copolymers and hydrogels based on copolymers of 2‐[(methacryloyloxy)ethyl]trimethylammonium chloride with N‐isopropylacrylamide (MADQUAT–NIPAAM) and poly(acrylic acid) (PAA) has been studied. The composition of the copolymer has been found to affect the composition of the polyelectrolyte complexes significantly, and the molecular weight of PAA influences their aggregation stability. Hydrogels of MADQUAT–NIPAAM immersed in solutions of PAA undergo contraction because of the formation of gel–polymer complexes. The rate of contraction and the final swelling degree of the gel–polymer complexes depend on the concentration of PAA in solution and its molecular weight. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1506–1513, 2004  相似文献   

11.

The complex formations of homopolymers and copolymers of poly(N‐isopropyl acrylamide) (PNIPAAm), polyacrylamide (PAAm) and poly(itaconic acid) (PIA) with Cu(II) ions in aqueous solutions were studied by using UV‐visible spectra in the region of 200–1100 nm and cyclic voltammograms between ?0.800 V and 0.600 V. According to the optical and electrochemical spectra of the polymer‐ and copolymer‐Cu(II) complexes and their ternary complexes with alanine, i.e., absorptions and the shifts in the wavelength of the maximum absorptions, currents and potentials of the peaks in the pH range of 3–12, the intensities of anodic and cathodic peak currents of polymers containing IA groups decrease with increasing pH and they show maximum absorptions at lower wavelengths than do the homopolymers used in this work. The peak point of the visible band shifts from 800 to 650 nm, with increasing pH, while the intensity of the third anodic peak observed after pH=4 increases in the case of both Ala‐Cu(II) and its ternary solution with P(NIPAAm‐co‐IA, 9.8 mol%). Both the pH‐dependent shifts of maximum absorptions and the appearence of the third anodic peaks as the pH raised were interpreted as a presence of tetracoordinated Cu(II) complexes in the solution and on the electrode surface, involving combined carboxyl, amide and amine interaction.  相似文献   

12.
Ester-substituted oxyethylene polymers and copolymers of methyl 10,11-epoxyundecanoate were prepared with an aluminumalkyl–water coordination initiator system modified with acetylacetone. Poly(ethylene oxide) ionomers, polyelectrolytes, and polycarboxylic acids were obtained by alkaline hydrolysis of the pendant carbomethoxy groups and by neutralizations with acetic acid. The high molecular weight substituted poly(ethylene oxide)s were characterized by spectral, thermal, and dilute solution measurements. The infrared spectra of carboxylate substituted poly(ethylene oxide)s, both homo- and copolymers, show the typical shifts in the carboxyl absorption when going from the ester to the carboxylate group to the free acid. Polymer transitions temperatures, as measured by DSC, changed accordingly. Wide-angle x-ray diffraction measurements strongly suggest the existence of ionic domains in the oxyethylene polymer matrix. Dilute solution properties of the ionomers show typical polyelectrolyte behavior, including a substantial change in viscosity when ionic solute is added.  相似文献   

13.
Solution properties of copolymers [C(MA-Py)x] of methacrylic acid and 4-vinylpyridine and intermacromolecular complexes of poly(methacrylic acid) (PMAA) and poly(4-vinylpyridine) (PVP) in the presence or absence of a proton-accepting water-soluble polymer such as poly(ethylene glycol) (PEG) in water/methanol mixed solvent are studied by potentiometric titration, turbidity and viscosity methods. These copolymers behave like polyampholytes and their solubilities are strongly dependent with pH changes. The pH regions where they are precipitated around their isoelectric points are narrower than those of the intermacromolecular complex of PMAA with PVP. The polyampholyte can form an intermacromolecular complex with PEG in acidic solution but this complex is soluble in the medium.  相似文献   

14.
The viscosity behavior of polyelectrolyte solutions induced by borate or phenylboronate complexation with poly(glyceryl methacrylate) (PGM) has been investigated. In dilute solutions borate ions can form monodiol (1/1) complexes and didiol (2/1) intramolecular complexes. Both types of complex are anionic. Thus, the polymer is characterized by the existence of charged sites on the chain and loops formed by intramolecular complexation. On the contrary, phenylboronate can only give monodiol 1/1 complexes. In the presence of passive salt, the charges are screened. By addition of borate ion to a PGM solution, a decrease of the initial polymer viscosity due to loop formation is first observed, then the anionic charges fixed on the chain by complex formation induce an expansion of the polyelectrolyte and the viscosity of the solution increases. The situation is different for the PGM-phenyl boronate system, where no intramolecular crosslink is present. In this case the viscosity of the solution increases with phenyl boronate concentration. But for a fixed complexing ion concentration it will tend to that of the neutral polymer when NaCl is added. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), was prepared by Friedel–Crafts reaction of 4‐bromobenzoyl chloride and diphenyl, followed by condensation with potassium phenoxide. Novel poly(ether ketone ketone) (PEKK)/poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) copolymers were synthesized by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of diphenyl ether (DPE) and BPOBDP, in the presence of anhydrous aluminum chloride and N‐methyl‐pyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by various analytical techniques such as FT‐IR, DSC, TGA, and wide‐angle X‐ray diffraction (WAXD). The results showed that the resulting copolymers exhibited excellent thermal stability due to the existence of diphenyl moieties in the main chain. The glass transition temperatures are above 152°C, the melting temperatures are above 276°C, and the temperatures at a 5% weight loss are above 548°C in nitrogen. The copolymers with 50–70 mol% BPOBDP had tensile strengths of 101.5–102.7 MPa, Young's moduli of 3.23–3.41 GPa, and elongations at break of 12–17%. All these copolymers were semicrystalline and insoluble in organic solvents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A fluorocarbon-modified poly(N-isopropylacrylamide) has been synthesized by copolymerization of N-isopropyl acrylamide with a small amount of acrylate or methacrylate containing a perfluoroalkyl group. It was found that the hydrophilicity of macromolecular backbone is an important factor to the solution properties of the copolymers and that hydrophobic association between fluorocarbon groups is stronger than that between the corresponding hydrocarbon analogies. The viscosity of some of the copolymer solutions was very sensitive to temperature. It was dilatant at higher fluorocarbon comonomer content ( > 0.20-1.0 mol%) and was Newtonian at very low fluorocarbon comonomer content (0.03-0.2 mol% ) . Evidence for hydrophobic association of the fluorocarbon groups was obtained from the effects of adding Nad and surfactants on the solution viscosity. The LC-ST properties of these copolymers were studied by DSC method and this was also found to be consistent with hydrophobic association between the fluorocarbo  相似文献   

17.
Palladium-catalyzed Mizoroki-Heck reactions were carried out in water using thermoresponsive polymer micelles. The micelles were generated from thermoresponsive block copolymers consisting of a poly(N-isopropylacrylamide) (PNIPAAm) segment and a hydrophilic segment such as nonionic poly(ethylene glycol) (PEG) (2) and anionic poly(sodium p-styrenesulfonate) (PSSNa) (9). These copolymers exhibited lower critical solution temperature (LCST) behavior at ca. 40–50?°C and showed thermal stimuli-induced formation and dissociation of micelles. The copolymers formed micelles in aqueous solution at higher temperature, where catalytic reactions proceeded. At lower temperature, the micelles dissociated to form a clear solution, enabling efficient extraction of the products from aqueous reaction mixture. In the presence of these copolymers, palladium complexes catalyzed the coupling reactions between aryl iodides and alkene compounds inside the hydrophobic micelle cores in water under relatively milder conditions. Extraction of the products from the aqueous solution of 2 or 9 was found to be efficient enough in comparison with conventional surfactants.  相似文献   

18.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl(BPOBDP), was synthesized via a two‐step synthetic procedure. A series of novel poly(ether sulfone ether ketone ketone)/poly(ether ketone diphenyl ketone ether ketone ketone) copolymers were prepared by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of 4,4′‐diphenoxydiphenylsulfone (DPODPS) and 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers with 10–50 mol% DPODPS are semicrystalline and have remarkably increased Tgs over commercially available PEEK and PEKK. The copolymers with 40–50 mol% DPODPS had not only high Tgs of 170–172°C, but also moderate Tms of 326–333°C, which are extremely suitable for melt processing. These copolymers have tensile strengths of 96.5–108.1 MPa, Young's moduli of 1.98–3.05 GPa, and elongations at break of 13–26% and exhibit excellent thermal stability and good resistance to acidity, alkali, and common organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Two kinds of polyelectrolytes containing maleic acid component (MA copolymers), i.e., poly(styrene-alt-maleic acid) (PSMA) and poly(vinyl methyl ether-alt-maleic acid) (PVMEMA), were investigated on their polymer chain dimensional changes in solution, and also in gel phase for the latter, as a function of the polymer charge density or pH of the (immersing) solution. Being different from common poly(carboxylic acid)s such as poly(acrylic acid), both of the MA copolymers showed maximum in the reduced viscosity or the gel size with increasing the charge density or the solution pH. The maximum in the reduced viscosity was much more significant for PSMA than PVMEMA. To see if intramolecular hydrogen bond between a pair of dissociated and undissociated carboxyl groups in an MA residue contributes to the emergence of the peak or not, similar measurements were performed also in the presence of concentrated urea (5 M). Almost the same values were obtained up to the peak position for the reduced viscosity and the gel swelling degree with increasing pH of the (immersing) solutions, which strongly suggested that the supposed effect is negligible, if any. All the results including those for PVMEMA system were interpreted in terms of the ionomer-like conformational change (ion cluster formation) of polyelectrolytes that has been often observed when the polymer charges are in rather less polar circumstances.  相似文献   

20.
A four-armed anionic star-shaped block polymer, containing an anionic polymer poly(2-Acrylamido-2-methylpropanesulfonic acid) (PAMPS) as the core group and poly(2-(Dimethylamino)ethyl methacrylate) (PDM) as the terminal group, was synthesized by using the Atom Transfer Radical Polymerization (ATRP) method. The (PAMPS50-PDM50)4 aqueous solution exhibited both polyelectrolyte and hydrophobic associative characteristics, that is, a low concentration of NaCl results in decreasing viscosity but a high concentration of NaCl results in increasing viscosity. The four-armed anionic block polymer shows a CO2-reversible property at high concentrations of brine. Viscosity, pH, and ζ potential demonstrate the switchability jointly; the values could be switched from relatively low to high cyclically. These transitions could actually be attributed to the protonation of tertiary amine groups in PDM blocks, and the mechanism was proved by 1H NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号