首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用电聚合方法在石墨烯纳米片(GN)的表面聚合一层聚对氨基苯磺酸(PABSA),制备了聚对氨基苯磺酸/石墨烯复合修饰玻碳电极(PABSA/GN/GCE)。研究了尿酸(UA)和抗坏血酸(AA)在该修饰电极上的电化学行为。与聚对氨基苯磺酸修饰电极(PABSA/GCE)及石墨烯单层膜修饰电极(GN/GCE)相比,复合修饰电极PABSA/GN/GCE显著提高了对UA和AA的检测灵敏度和分离度。在0.1 mol/L磷酸盐缓冲溶液(pH7.0)中,UA和AA的峰电位差达344 mV,表明PABSA/GN/GCE能实现对UA的选择性测定。UA的峰电流与其浓度呈良好的线性关系,线性范围为1.0×10-7~8.0×10-4mol/L,检出限为4.5×10-8mol/L。该复合修饰电极用于尿样中尿酸的测定,结果满意。  相似文献   

2.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

3.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

4.
过循环伏安制备了聚对羟基苯甲酸修饰的玻碳电极。考察了该电极对抗坏血酸的电催化性能。结果显示,聚对羟基苯甲酸修饰玻碳电极对抗坏血酸有很好的电催化作用。在修饰后的电极上产生的峰电流比修饰前的电极产生的峰电流大4倍,氧化峰电位负移189 mV。其氧化峰电流与抗坏血酸浓度在2.6×10-5~3.68 ×10-4mol/L范围内呈线性关系,相关性系数为0.9984,检测限为5×10-6 mol/L(S /N = 3)。在AA与UA共存的体系中,能排除多巴胺对抗坏血酸测定的干扰。  相似文献   

5.
A simple and sensitive electroanalytical method for determination of shikonin,a widely used antitumoral agent,using β-cyclodextrin-functionalized multiwalled carbon nanotubes composite modified glassy carbon electrodes(MWCNTs/β-CD/GCE) was presented.CDs are water-soluble and environmentally friendly and can improve the dispersibility of MWCNTs/β-CD functional materials,which was confirmed by SEM.The electrochemical behaviors of shikonin on different electrodes were investigated by cyclic voltammetry(CV) and differential pulse voltammograms(DPVs).The results demonstrated that the redox peak currents of shikonin obtained at MWCNTs/β-CD/GCE were much higher than those at theβ-CD/GCE and MWCNTs/GCE,which can be attributed to the combination of the excellent electrocatalytic properties of MWCNTs and the molecular recognition ability of β-CD.At MWCNTs/β-CD/GCE,the response current exhibits a linear range from 5.0 nmol/L to 10.0 μmol/L with a detection limit of 1.0 nmol/L(S/N = 3).As a practical application,the proposed method was applied to quantitatively determine shikoninin urine samples with satisfying results.  相似文献   

6.
王存  张毅  孟丽  赵欣  王跃 《分析测试学报》2017,36(9):1124-1128
采用滴涂法得到多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE),通过电沉积方法将3-氨基-5-巯基-1,2,4-三唑(TA)沉积在MWCNTs/GCE表面,制备了聚(3-氨基-5-巯基-1,2,4-三唑)/多壁碳纳米管修饰电极(p TA/MWCNTs/GCE)。采用循环伏安法(CV)和示差脉冲伏安法(DPV),研究了尿酸(UA)、黄嘌呤(XA)和次黄嘌呤(HX)在该修饰电极上的电化学行为。结果表明,该修饰电极对UA、XA和HX均有较好的电催化活性作用,能实现对3种物质的同时测定。UA、XA和HX在该修饰电极上的线性范围分别为9.0~739.0、2.0~259.0、1.0~353.0μmol/L;检出限分别为0.67、0.17、0.33μmol/L。该修饰电极已成功用于尿液和血清实际样品中UA、XA和HX的同时测定,回收率为98.8%~105.5%。  相似文献   

7.
A simple and rapid electrochemical method is developed for the determination of trace-level norfloxacin, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNTs/Nafion film-coated glassy carbon electrode (GCE) is constructed and the electrochemical behavior of norfloxacin at the electrode is investigated in detail. The results indicate that MWCNTs modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for norfloxacin (NFX) with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the current for oxidation of selected analyte is enhanced significantly in comparison to the bare GCE. The electrocatalytic behavior is further exploited as a sensitive detection scheme for the analyte determinations by linear sweep voltammetry (LSV). Under optimized condition in voltammetric method the concentration calibration range and detection limit (S/N=3) are 0.1-100 micromol/L and 5 x 10(-8)mol/L for NFX. The proposed method was successfully applied to NFX determination in tablets. The analytical performance of this sensor has been evaluated for detection of the analyte in urine as a real sample.  相似文献   

8.
张亚会  徐慧  刘刚 《分析测试学报》2017,36(10):1208-1213
采用滴涂方式将羧酸化多壁碳纳米管(f-MWCNTs)修饰于玻碳电极(GCE)表面成膜,然后恒电位法在上述修饰电极表面电沉积壳聚糖(CS)膜,形成CS和f-MWCNTs复合膜修饰电极(CS/f-MWCNTs/GCE),并用于色氨酸(Trp)对映异构体的手性识别。采用扫描电子显微镜(SEM)表征了修饰电极表面形貌的差异,电化学阻抗(EIS)和循环伏安法(CV)研究修饰电极的电化学行为差异。差分脉冲伏安法(DPV)用于区别色氨酸(Trp)对映异构体,分离系数可达2.38。研究发现该修饰电极对L-Trp的DPV响应信号强于D-Trp,检测的线性范围为8.0×10~(-6)~4.0×10~(-3)mol/L,检出限(S/N=3)为5.0×10~(-6)mol/L。该方法简单、经济、快速,对发展其它手性化合物的检测方法提供了参考。  相似文献   

9.
聚对氨基苯磺酸/石墨烯修饰玻碳电极伏安法测定痕量汞   总被引:1,自引:1,他引:0  
制备了对氨基苯磺酸/石墨烯复合膜修饰电极,研究了汞在修饰电极上的电化学行为。 在0.1 mol/L、pH=4.0的磷酸盐缓冲液中,以此修饰电极为工作电极,在-1.2 V搅拌富集5 min,用差分脉冲伏安法测定0.31 V处的溶出峰电流。 结果表明,该电极显著提高了汞离子的电化学响应信号。 在优化条件下,峰电流与Hg2+的浓度在1.0×10-6~5.0×10-4 mol/L范围内呈良好的线性关系,相关系数为0.995。 方法的检出限为5.0×10-7 mol/L。 将该法用于水样中痕量汞的测定,回收率为92.2%~105.2%。  相似文献   

10.
An electrochemical sensor was constructed by modification of a glassy carbon electrode (GCE) with nanoparticles of hafnium oxide (HfO2) and multi-walled carbon nanotubes (MWCNTs) for the sensitive determination of octopamine. The platform (HfO2NPs/MWCNTs/GCE) presented an improved anodic peak for octopamine at 0.65 V. The combination of HfO2 and MWCNTs resulted in outstanding catalytic activity and enhanced the magnitude of the peak response. Results suggest that a three-electron oxidation occurs for the process of octopamine. Voltammetry of octopamine exhibited a dynamic linear response in the concentration range of 1.6×10−6∼4.8×10−5 M with a detection limit of 5.4×10−7 M for octopamine.  相似文献   

11.
利用循环伏安法将次甲基蓝修饰到玻碳电极表面,制备了聚次甲蓝修饰电极(PMB/GCE),并研究了此电极的化学性质及对叶酸的电化学响应特性.在磷酸盐缓冲液中PMB/GCE电极对叶酸有良好的催化作用并出现一个灵敏的还原峰,用循环伏安法测得峰电流与叶酸的浓度在0.1×10-3~2.9×10 -3 mol/L范围内呈良好线性关系...  相似文献   

12.
A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02–450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.  相似文献   

13.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

14.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

15.
A reliable and reproducible method for the determination of uric acid in urine samples has been developed. The method is based on the modification of a glassy carbon electrode by 3-acetylthiophene using cyclic voltammetry. The poly(3-acetylthiophene) modified glassy carbon electrode showed an excellent electrocatalytic effect towards the oxidation of uric acid in 0.1 m phosphate buffer solution (PBS) at pH 7.2. Compared with a bare glassy carbon electrode (GCE), an obvious shift of the oxidation peak potential in the cathodic direction and a marked enhancement of the anodic current response for uric acid were observed. The poly(3-acetylthiophene)/GCE was used for the determination of uric acid using square wave voltammetry. The peak current increased linearly with the concentration of uric acid in the range of 1.25 x 10(-5)-1.75 x 10(-4) M. The detection limit was 5.27 x 10(-7) M by square wave voltammetry. The poly(3-acetylthiophene)/GCE was also effective to determine uric acid and ascorbic acid in a mixture and resolved the overlapping anodic peaks of these two species into two well-defined voltammetric peaks in cyclic voltammetry at 0.030 V and 0.320 V (vs. Ag/AgCl) for ascorbic acid and uric acid, respectively. The modified electrode exhibited stable and sensitive current responses toward uric acid and ascorbic acid. The method has successfully been applied for determination of uric acid in urine samples.  相似文献   

16.
Abstract

Glassy carbon electrodes or plates were modified with nanocomposites consisting of cobalt tetraaminophenoxyphthalocyanine (CoTAPhPc), reduced graphene oxide nanosheets (rGONs) and multi-walled carbon nanotubes (MWCNTs). The modified electrodes were characterized using cyclic voltammetry, scanning electrochemical microscopy (SECM) and time-of-flight-secondary ion mass spectrometer (TOF-SIMS). The electrocatalytic activity of the modified electrode was tested for detection of L-cysteine. The presence of CoTAPhPc on sequential layers of MWCNT and rGONs resulted in improved detection currents compared to CoTAPhPc alone or when MWCNT/rGONs are mixed in CoTAPhPc–MWCNT/rGONs (mix)–glassy carbon electrode (GCE). CoTAPhPc–MWCNT–GCE (without rGONS) showed higher sensitivity toward l-cysteine as compared to the probes incorporating rGONs with a catalytic rate constant of 4.62?×?104 M?1s?1 and a detection limit of 30?nM. The presence of rGONs improved the stability of the electrode.  相似文献   

17.
This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination.  相似文献   

18.
An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.  相似文献   

19.
基于石墨烯纳米材料和循环伏安法技术制备了聚对氨基苯磺酸/石墨烯修饰电极并研究了氧氟沙星(OFL)在该修饰电极上的电化学行为,建立了一种简单快速灵敏测定氧氟沙星的电化学分析方法。 结果表明,与玻碳电极相比,对氨基苯磺酸/石墨烯电化学修饰电极能显著提高氧氟沙星的峰电流。 在优化条件下,其检测线性范围为1~600 μmol/L,最低检测限为(S/N=3)0.33μmol/L。 该修饰电极具有较好的重现性和稳定性,用于实际样品氧氟沙星滴眼液的测定,效果良好。  相似文献   

20.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号