首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Long-wave infrared (IR) generation based on type-II (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 μm with a single crystal 28 mm in length.  相似文献   

2.
Y. J. Ding  W. Shi 《Laser Physics》2006,16(4):562-570
We review our up-to-date result on the development of widely tunable monochromatic THz sources, implemented based on difference-frequency generation (DFG) in GaSe, ZnGeP2, and GaP. Using a GaSe crystal, the output wavelength was tuned in the range from 66.5 μm to 5664 μm (from 150 cm?1 to 1.77 cm?1) with the highest peak power 389 W. This tuning range is the widest ever produced for a continuously tunable and coherent tabletop THz source. Moreover, the conversion efficiency 0.1% is also the highest ever achieved for a tabletop system. On the other hand, based on DFG in a ZnGeP2 crystal, the output wavelength was tuned in the ranges 83.1–1642 μm and 80.2–1416 μm for two phase-matching configurations. The output power has reached 134 W so far. Finally, using a GaP crystal, the output wavelength was tuned in the range 71.1–2830 μm, whereas the highest peak power was 15.6 W. The advantage of using GaP over GaSe and ZnGeP2 is that crystal rotation is no longer required for wavelength tuning. Instead, one just needs to tune the wavelength of one mixing beam within the bandwidth of as narrow as 15.3 nm.  相似文献   

3.
Efficient conversion into the mid-IR of a low pulse-energy (2.5 mJ) Nd:YAG laser is achieved by cascaded KTiOPO4 (KTP) and ZnGeP2 (ZGP) optical parametric oscillators followed by a ZGP optical parametric amplifier. The first stage 2.13 μm degenerate KTP OPO uses four KTP crystals in a walk-off compensated geometry and an elliptical pump beam focal geometry to produce up to 2.2 W from 6.3 W incident. The 2.13 μm e-ray pumps a Type-I ZGP OPO, which produces 0.5 W of light in the 3.8-4.8 μm spectral region that in turn is amplified by a 2.13 μm o-ray pumped optical parametric amplifier generating 0.84 W with an M2 of <2.  相似文献   

4.
We have made a direct measurement of the absolute nonlinear coefficient for AgGaSe2 by phasematched second harmonic generation. The measured value is d36 = (3.24 ± 0.50) × 10?11 m/V. For CO and Co2 lasers the observed phasematching angles for second harmonic generation and frequency mixing are within one degree of the values calculated by fitting the reported index of refraction data to Sellmeier equations. At 1.06 μm the optical damage threshold depends on the number of incident laser pulses. For 1000 pulses damage occurs at 11 MW/cm2. The samples were cut from crack-free single crystal boules with absorption coefficient smaller than 0.1 cm? at 10.6 μm.  相似文献   

5.
A single resonator 8.30 μm ZnGeP2 (ZGP) optical parametric oscillators (OPO) was reported in the paper. The OPO was pumped by a 10.2-W Tm,Ho:GdVO4 laser at 8 kHz in a Q-switch mode, a 170-mW idler was obtained at 8.30 μm, and the output power of the idler and signal wave was 1.0 W, corresponding to an optical-optical conversion efficiency of 10.3% and a slope efficiency of 20.9%. Tm,Ho:GdVO4 laser was pumped by a 30-W fiber-coupled laser diode (LD) at the center wavelength of 801 nm. The output wavelength of Tm,Ho:GdVO4 laser was at 2.05 μm, and the energy per pulse of 1.28 mJ in 18 ns was achieved at 8 kHz with the peak power of 71.1 kW.  相似文献   

6.
The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4f-5d transitions in the range (56–78) × 10?3 cm?1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50–56) × 10?3 cm?1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34–82) × 10?3 cm?1 at 300 K for different crystal orientations.  相似文献   

7.
We have demonstrated that we believe to be the first ring ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a pulsed Ho:LuAG laser. The maximum output power of the ring ZGP OPO laser was 5.51 W at 13.1 W incident Ho pump power, corresponding to a slope efficiency of 59.0 %. The ZGP OPO laser produced 14 ns mid-infrared pulses in the 3.72–4.01 and 4.37–4.75 μm spectral regions simultaneously. In addition, the continuous wave Ho:LuAG laser generated 26.5 W of linearly output at 2,094.4 nm at the absorbed Tm pump power of 49.9 W.  相似文献   

8.
The effect of resonator length on ZnGeP2 doubly resonant optical parametric oscillator was reported in this letter. With the employment of a Tm,Ho:GdVO4 laser as the pump source at 2.05 μm, we have found that there are obvious peaks of the output power when the resonator lengths are matched to the length of the pump source. The ZGP OPO can generate a maximum output power of 4.27 W at 3.80 μm signal and 4.45 μm idler when the resonator length matches that of the pump source.  相似文献   

9.
A doubly resonant ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a novel Tm,Ho:GdVO4 laser was demonstrated. Cryogenic Tin(5 at.-%), Ho(0.5 at.-%):GdVO4 laser with high pulse repetition frequency (PRF) of 10 kHz at 2.05 μm was employed as pumping source of ZGP OPO. The 15-mm-long ZGP crystal, 55° cut for I-type phase-matching with low absorption coefficient less than 0.05 cm^-1 at 2 μm, was placed in a piano-piano cavity with resonator length of 30 mm. The ZGP OPO generated a total combined output power of 1.2 W at 3.75 and 4.52 μm under pumping power of 5.3 W, corresponding to slope efficiency of 40% from incident 2μm laser power to midinfrared (Mid-IR) output. A widely tunable range from 3.0 to 6.5 μm was achieved by changing the crystal angle only 3.5°.  相似文献   

10.
A line tunable singly resonant noncritically phase matched narrow band width ZnGeP2 (ZGP) optical parametric oscillator pumped by the output idler radiation from a KTA OPO based on a 20 mm long KTA crystal pumped from a Q-switched Gaussian shaped Nd:YAG laser beam with a grating having grooves density 85 lines/mm has been demonstrated in the spectral ranges of 3–7 μm. The measured threshold of oscillation energy was 10 μJ. The conversion efficiency was 20.5% and slope efficiency of the ZGP OPO was 20% using a 23 mm long ZGP crystal at 26 mm cavity length. Line width of the generated infrared radiation from ZGP OPO was 37–60 nm.  相似文献   

11.
The third-order optical nonlinearity of deep-ultraviolet (DUV) nonlinear optical (NLO) crystal KBe2BO3F2 (KBBF) was investigated using single-beam Z-scan technique for the first time. The Z-scans were performed on a c-cut KBBF crystal and a KBBF prism-coupling device (PCD) with picosecond pulses at 355?nm. No two-photon absorption was observed in the experiment. The measured nonlinear refraction index n 2 showed positive signs, indicating self-focusing Kerr effects. The n 2 values were estimated to be (1.75±0.35)×10?15?cm2/W with the c-cut sample and (1.85±0.37)×10?15?cm2/W with the PCD, corresponding to the third-order nonlinear optical susceptibilities $\chi_{\mathrm{eff}}^{(3)}$ of (0.99±0.20)×10?13?esu and (0.94±0.19)×10?13?esu, respectively. The results are expected to promote the investigation of frequency conversion processes with ultra-short laser in KBBF crystal.  相似文献   

12.
We report a high-power, long-wavelength infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a Q-switched Tm,Ho:GdVO4 laser. The wavelength tuning range of 7.8–9.9 μm is realized by rotating the external angle of the ZGP crystal. We obtain an output power over 30 mW across the whole wavelength range and achieve a 1.71 W output power at 8.08 μm by transmitting the OPO parameters, corresponding to an idler laser slope efficiency of 12.1%.  相似文献   

13.
The present work is devoted to investigation of optical absorption in pure and neodymium-doped YAlO3 (YAP) single crystals in the spectral range 0.2–1.1 μm induced by the influence of 12C ions irradiation with energy 4.50 MeV/u (MeV per nucleon) and a fluence 2 × 109 cm?2 or of 235U ion irradiation with energy 9.35 MeV/u and a fluence 5 × 1011 cm?2. The induced absorption in the case of 12C ions irradiation is caused by recharging of point growth defects and impurities under the radiation influence. After irradiation by 235U ions with fluence 5 × 1011 cm?2 the strong absorption rise is probably caused by contribution of the lattice destruction as a result of heavy ion bombardment.  相似文献   

14.
The processes of nonlinear refraction and nonlinear absorption are studied in the photorefractive Bi12SiO20 (BSO) and Bi12GeO20 (BGO) crystals at a wavelength of a picosecond Nd:YAG laser of 1064 nm. The nonlinear refraction in the crystals is shown to be related to the Kerr effect, and the nonlinear absorption at this wavelength, to three-photon absorption. The three-photon absorption coefficients of the BSO and BGO crystals are equal, respectively, to (2.5±0.8) ×10?20 and (4.4±1.3) ×10?20 cm3W?2.  相似文献   

15.
 研究了15 MW峰值功率脉冲激光与600 μm芯径石英光纤耦合中存在的空气击穿现象。对聚焦区域的空气击穿现象进行了理论和实验研究,测得空气击穿阈值为0.79×109 W/cm2。测得固体介质的激光损伤阈值为2.12×109 W/cm2,与理论计算结果相符。提出了七合一光纤耦合器用于解决空气击穿的办法,实验测得7根光纤并束的耦合效率为67.21%。结果表明光纤耦合器可有效解决15 MW峰值功率脉冲激光与600 μm芯径石英光纤的耦合。  相似文献   

16.
Physical mechanisms of formation of radiation losses in the terahertz range in ZnGeP2 crystals have been experimentally studied in the wave number range of 5–350 cm?1 at temperatures of 10–300 K. The dominant contribution of two-phonon difference processes to the loss formation in the given frequency range has been shown.  相似文献   

17.
Long-wave infrared(IR) generation based on type-II(o→e+o) phase matching ZnGeP 2(ZGP) and CdSe optical parametric oscillators(OPOs) pumped by a 2.05 μm Tm,Ho:GdVO 4 laser is reported.The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally.For the ZGP OPO,up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency(PRF) with a slope efficiency of 7.6%.This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm.For the CdSe OPO,we demonstrate a 64 mW output at 8.9 μm with a single crystal 28 mm in length.  相似文献   

18.
Ba0.7Sr0.3TiO3:Eu ferroelectric films were deposited on quartz substrates by pulsed laser deposition. The linear absorption coefficient and the linear refractive index calculated from the transmission spectrum at 532 nm were found to be 1.67×104 cm?1 and 1.82 respectively. The room temperature photoluminescence shows the characteristic emission of Eu3+ ions. The nonlinear optical properties of the film were investigated by a single beam Z-scan setup. The negative nonlinear refractive index and two photon absorption coefficient was found to be ?1.508×10?6 m2/GW and 240 m/GW respectively. The real and imaginary part of the third order susceptibility of the thin films is 2.58×10?17 m2/V2 and 1.16×10?16 m2/V2 respectively. The BST:Eu thin films show good optical limiting property.  相似文献   

19.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

20.
The influence of free carriers on the optical constants of Bismuthtriselenide Bi2Se3 was investigated in the infrared (2–23 μm). The reflection and transmission ofn-type Bi2Se3 single crystals was measured at approximately 30, 80 and 300 °K. Up till now,p-type Bi2Se3 is not known. The dependence of the refraction index and the absorption constant on the wavelength was calculated from the results of the measurements. It was found that the optical constants strongly depend on the carrier concentration. The crystals were prepared according the bridgman method. They normally have a carrier concentration of about 1019 cm?3, which can be diminished by annealing in Selenium vapour of various pressure up to 1018 cm?3. Bismuthtriselenide is a degenerated semiconductor. We obtained for the optical energy band gap by extrapolation the value 0,21 eV. It increases with increasing carrier concentration. This is known as the Burstein-Moss-effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号