首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

2.
The monolayer properties of poly(n-stearyl methacrylate), poly(n-lauryl methacrylate), and their mixtures at various ratios of the two polymers have been studied from the measurements of their surface pressure–area isotherms at air–water interface. The monolayer properties of their mixtures have been compared with those of their corresponding copolymers. The results show that the isotherms of the mixed monolayers have two break points at higher pressures than that of poly(n-lauryl methacrylate). This suggests that the mixtures may form more stable films that consist of separate phases of the two homopolymers, although each phase may contain a small amount of the other. The isotherms of the copolymer monolayers indicate a phase transition from liquid condensed to solid film between 50 segment mole % and 70% poly(n-stearyl methacrylate). The monclayer of these copolymers has properties that differ from those of the corresponding mixtures of two pure homopolymers and is more compatible than the mixtures of pure homopolymers.  相似文献   

3.
Mixtures of biodegradable polymers, poly(dl-lactide) and poly(ε-caprolactone) monolayers at the air/water interface have been studied. Surface pressure-area isotherms of poly(dl-lactide), poly(ε-caprolactone) and their mixtures were obtained by monolayer compression at constant temperature. The behavior of the mixed monolayers was analyzed according to the classical addition rule. Good agreement was observed between experimental and ideal behavior except for one composition where a negative deviation was observed. The polymer monolayer miscibility was corroborated by comparison between the surface pressure-area isotherms of the random copolymers (dl-lactide-co-ε-caprolactone) and their mixtures at the same compositions. Brewster angle microscopy (BAM) shows homogeneity in the monolayers in the whole range of compositions. These results also confirm the miscibility of the mixtures.  相似文献   

4.
The antimalarial agent halofantrine penetrates dipalmitolylphosphatidylcholine (DPPC) monolayers resulting in an increase in surface pressure and an expansion in area occupied by the lipid components of the monolayer. This phenomenon is observed at concentrations (0.05-0.2 microm) of halofantrine that have no surface activity. Penetration increases with drug concentration and is greatest at low initial surface pressures of the monolayer. A critical surface pressure of the DPPC monolayer has been determined from constant area and constant pressure conditions. The magnitude of these values support the hypothesis that halofantrine readily penetrates the DPPC monolayers. The presence of cholesterol in the DPPC monolayer hampers penetration and a lower critical surface pressure is obtained under such conditions. Even then, a slower rate of penetration is observed only in monolayers maintained at high initial surface pressures (10, 15 mN/m), corresponding to the liquid condensed phase of the monolayer, and not at low surface pressures (2.5, 5.0 mN/m). These results help to give a better understanding of the dynamics of the halofantrine-phospholipid interaction as well as the pharmacodynamic character of the drug.  相似文献   

5.
The degradation kinetics of Langmuir monolayer films of a series of biodegradable polyesters has been studied to investigate the effect of degradation medium, alkalinity and enzymes. The degradation behavior of polyester monolayers strongly depended on both degradation medium and surface pressure. As the surface pressure was increased, the degradation rates of poly(l-lactide) (PLLA) and poly[(R)-3-hydroxybutyrate] (P(3HB)) increased in both degradation media. When monolayers were exposed to an alkaline subphase, the degradation of PLLA monolayers occurred at relatively low surface pressures; the PLLA monolayers were hydrolyzed at pH 10.5 regardless of surface pressure, while the alkaline degradation of P(3HB) monolayer occurred over a constant surface pressure of 7 mN/m at pH 11.8. These results have been explained by the difference in hydrophilic/hydrophobic balance of the polymers; PLLA is more hydrophilic than P(3HB). In contrast, the enzymatic degradations of both polymer monolayers occurred at higher constant surface pressures than those of the alkaline treatment; 7 mN/m for PLLA and 10 mN/m for P(3HB). This behavior was attributed to the enzymes being much larger than the alkaline ions: the enzymes need a larger contact area with the submerged monolayers to be activated.  相似文献   

6.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

7.
A newly developed planar array infrared reflection-absorption spectrograph (PA-IRRAS) offers significant advantages over conventional approaches including fast acquisition speed, excellent compensation for water vapor, and an excellent capacity for large infrared accessories, e.g., a water trough. In this study, the origin of stereocomplexation in a polylactide enantiomeric monolayer at the air-water interface was investigated using PA-IRRAS. PA-IRRAS was used as a probe to follow the real-time conformational changes associated with intermolecular interactions of polymer chains during the compression of the monolayers. It was found that a mixture of poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) (D/L) formed a stereocomplex when the two-dimensional monolayer developed at the air-water interface before film compression, indicating that there is no direct correlation between film compression and stereocomplexation. PA-IRRAS spectra of the stereocomplex exhibited distinct band shifts in crystalline sensitive components, e.g., the vas(C-O-C, h) mode, as well as amorphous-dependent components, e.g., the vs(C-O-C) mode, when compared with the spectra of PLLA alone. On the other hand, time-resolved PA-IRRAS spectra, which were obtained as the films were being compressed, revealed that both monolayers of PLLA and mixed PLLA/PDLA stereocomplex were crystallized into a 10(3)-helix and a 3(1)-helix, respectively, with a distinct band shift in crystalline sensitive components only. Fourier self-deconvolution of the spectra demonstrated that the band shift in crystalline sensitive components is correlated with the intermolecular interaction of polymer chains.  相似文献   

8.
Langmuir isotherm, neutron reflectivity, and small angle neutron scattering studies have been conducted to characterize the monolayers and vesicular bilayers formed by a novel chimeric phospholipid, ChemPPC, that incorporates a cholesteryl moeity and a C-16 aliphatic chain, each covalently linked via a glycerol backbone to phosphatidylcholine. The structures of the ChemPPC monolayers and bilayers are compared against those formed from pure dipalmitoylphoshatidylcholine (DPPC) and those formed from a 60:40 mol % mixture of DPPC and cholesterol. In accord with previous findings showing that very similar macroscopic properties were exhibited by ChemPPC and 60:40 mol % DPPC/cholesterol vesicles, it is found here that the chimeric lipid and lipid/sterol mixture have very similar monolayer structures (each having a monolayer thickness of ~26 ?), and they also form vesicles with similar lamellar structure, each having a bilayer thickness of ~50 ? and exhibiting a repeat spacing of ~65 ?. The interfacial area of ChemPPC, however, is around 10 ?(2) greater than that of the combined DPPC/cholesterol unit in the mixed lipid monolayer (viz., 57 ± 1 vs 46 ± 1 ?(2), at 35 mN·m(-1)), and this difference in area is attributed to the succinyl linkage which joins the ChemPPC steroid and glyceryl moieties. The larger area of the ChemPPC is reflected in a slightly thicker monolayer solvent distribution width (9.5 vs 9 ? for the DPPC/cholesterol system) and by a marginal increase in the level of lipid headgroup hydration (16 vs 13 H(2)O per lipid, at 35 mN·m(-1)).  相似文献   

9.
In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).  相似文献   

10.
Langmuir monolayers of mixtures of straight-chain and branched molecules of hexadecanol and eicosanol were studied using surface pressure-area isotherms, Brewster angle microscopy, and interfacial rheology measurements. For hexadecanol mixtures below 30% branched molecules, the isotherms show a lateral shift to a decreasing area proportional to the fraction of straight chains. Above a 30% branched fraction, the isotherms are no longer identical in shape. The surface viscosities of both straight and mixed monolayers exhibit a maximum in the condensed untilted LS phase at pi = 20 mN/m. Adding branched chains results in a nonmonotonic increase in surface viscosity, with the maximum near 12% branched hexadecanol. A visualization of these immiscible monolayers using Brewster angle microscopy in the liquid condensed phase shows the formation of discrete domains that initially increase in number density and then decrease with increasing surface pressure. Eicosanol mixtures exhibit different rheological and structural behavior from hexadecanol mixtures. The addition of branched chains results in a lateral shift to increasing area, proportional to the fraction and projected area of both straight and branched chains. A phase transition is seen for all mixtures, including pure straight chains, at pi = 15 mN/m up to 50% branched chains. A second transition is seen at pi = 25 mN/m when the isotherms cross over. Above this transition, the isotherms shift in the reverse direction with increasing branched fraction. The surface viscosities of both straight and mixed monolayers show a maximum in the L2' phase near pi = 5 mN/m. The surface viscosity is constant for low branched fractions and decays beyond 15% branched chains.  相似文献   

11.
The characteristic features of hydroxystearic acid monolayers OH-substituted in the mid position of the alkyl chain deviate considerably from those of the usual nonsubstituted stearic acid. The phase behavior, domain morphology, and two-dimensional lattice structure of 9-, 11-, and 12-hydroxystearic acids are studied, using pi-A isotherms, Brewster angle microscopy (BAM), and grazing incidence X-ray diffraction (GIXD), to obtain detailed information on the effect of the exact position of the OH-substitution. The pi-A isotherms of all three hydroxyoctadecanoic acids have an extended flat plateau region, the extension of which only slightly decreases with the increase of temperature. At the same temperature, the extension of the plateau region increases and the plateau pressure decreases from 9-hydroxyoctadecanoic acid to 12-hydroxyoctadecanoic acid. The absolute -DeltaH and -DeltaS values for the phase transition increase slightly from 9-hydroxyoctadecanoic acid to 12- hydroxyoctadecanoic acid and indicate differences in the ordering of the condensed phase under consideration of the special reorientation mechanism of these bipolar amphiphiles at the fluid/condensed phase transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region is specific for the position of the OH-substitution of the alkyl chain, just as the lattice structures of the condensed monolayer phase. 11-hydroxyoctadecanoic acid monolayers form centered rectangular lattices with the chain tilt toward the NNN (next nearest neighbor) direction, and 12-hydroxyoctadecanoic acid monolayers have an oblique lattice over the entire pressure range. A special feature of 9-hydroxystearic acid monolayers is the phase transition between two condensed phases observed in the pi-A isotherm of 5 degrees C at approximately 18 mN/m, where the centered rectangular lattice shows a NNN/NN transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region, just as the lattice structures of the condensed monolayer phase, reveal the high specifity of the monolayer feature of the bipolar hydroxystearic acids OH-substituted in the mid position.  相似文献   

12.
A comparative study of spread and adsorbed monolayer of poly(ethylene oxide)s of different molecular weight hydrophobically modified with alkyl isocyanates of different length chain is reported. The modification of the polymer was carried out according to reported procedures. The polymers obtained were studied at the air-water interface by Langmuir isotherms for spread monolayers and by Gibbs isotherms for the adsorption process. Isotherms obtained are interpreted in terms of the hydrophobic and hydrophilic balance of the polymers. Limiting area per repeating unit (A(0)) and collapse pressure (pi(c)) from spread monolayers were obtained. Spread monolayers of the hydrophobically modified polymers show larger collapse pressure values than unmodified polymer monolayers. In the adsorption process the excess surface concentration Gamma(infinity), area per repeat unit sigma, and efficiency of the adsorption were determined. The values of the area occupied per repeat unit in adsorbed monolayer (sigma) were larger than those of the spread monolayer. The efficiency of the adsorption of poly(ethylene oxide)s increases with the hydrophobic modification and with the alkyl chain length.  相似文献   

13.
The spread monolayer formation of hydrophobic poly(3-alkylthiophene)s (P3ATs), regioregular poly(3-hexylthiophene) ( HT-P3HT), regioregular poly(3-dodecylthiophene) ( HT-P3DT), and regioirregular poly(3-hexylthiophene) ( RI-P3HT), were attained on the water surface via cospreading with a liquid-crystal molecule, 4'-pentyl-4-cyanobiphenyl (5CB). The spread monolayers were characterized by pi- A isotherms, Brewster angle microscopy (BAM), and atomic force microscopy (AFM). The molecular area for the cospread mixtures of P3ATs and 5CB expanded more than that of pure P3ATs as shown from the pi-A isotherms. BAM revealed that the mixed film forms the monomolecularly uniform and flat films on water. AFM elucidated that the spread monolayer of the hydrophobic P3ATs formed on the top of the 5CB monolayer on water with thicknesses of ca. 1.6 and ca. 2.6 nm for the two P3HTs and HT-P3DT, respectively. The P3AT/5CB hybrid monolayers could be fully transferred onto a solid substrate, and pure P3AT monolayers were obtained after volatilization of 5CB by gentle heating. The multilayer formation of pure P3AT monolayers was prepared by layer-by-layer deposition involving repeating horizontal deposition and successive volatilization of 5CB. Grazing angle incidence X-ray diffraction measurements showed that the lamella plane of the P3ATs is perfectly oriented parallel to the substrate plane in the resulting thin films. This shows a marked contrast with those obtained by spin casting using the identical polymer, where both in-plane and out-of-plane lamellae are involved. These thin films with perfectly controlled lamella orientation should be of great significance as the model system for evaluating the charge mobility for organic polymer electric devices.  相似文献   

14.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

15.
以等比例的聚L乳酸(PLLA)和聚D乳酸(PDLA)树脂为原料,先通过低温共混制备聚乳酸全立构粉末,然后将立构粉末与成核剂、玻璃纤维等混合,直接在注塑机中成型,注塑样品经热处理后,得到高耐热性能聚乳酸(PLA)样品,经测试,其维卡软化温度高达165 ℃以上,差示扫描量热分析(DSC)结果表明,处理后的样品富含立构物结晶,立构物结晶熔融焓高达27.6 J/g。 拉伸强度较纯PLA也有大幅提升,达到129 MPa。  相似文献   

16.
Sum frequency generation (SFG) spectra and surface pressure–molecular area (π–A) isotherms have been obtained for mixed cholesterol–DPPC monolayers with cholesterol mole fractions, x(chol.), from 0 to 1.0, at the air–water interface, under same conditions, at 22 °C. Analysis of the spectra indicated that incorporation of cholesterol into the monolayers at 3 mN m−1 greatly increases the conformational and orientational order of the alkyl chains of DPPC, maximizing these properties at x(chol.)=0.4. Analysis also indicated that order in the mixed monolayers at 15 and 35 mN m−1 is not affected by incorporation of cholesterol. The π–A isotherms measured at 3 mN m−1 for the mixed monolayer with x(chol.)=0.4 have the largest negative deviation of the molecular area relative to those of ideal mixtures (the so-called “condensation effect” of cholesterol), indicating the most thermodynamically stable state. Comparison of results from SFG spectra and π–A isotherms explicitly proved that the condensation effect can be interpreted in terms of conformational and orientational ordering of the alkyl chains of DPPC.  相似文献   

17.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

18.
"?Langmuir monolayers and LB films of 4-((s)-2-methylbutoxy)phenyl-(4'-(10-undecen-1-oyloxy)phenyl) methylenimine (MPUOPM) were investigated by ultraviolet-visible, polarized infrared spectroscopy. ?-A isotherms showed well-defined Langmuir monolayers were formed at an air/water interface for the MPUOPM and their mixture with SA. An inflection point at 13 mN/m appeared on the isotherm, which was due to the transition from the monolayer to multilayer. The polarized IR spectra of LB films of MPUOPM had provided new insight into the molecular orientation and structure. In LB films, the tilted angle between the alkyl chain and the normal line of the substrate was 48ffi, the tilted angle between the dipole moment of C=N and the normal line of the substrate was 51ffi. The alkyl chains assumed a trans-zigzag conformation but it included a few gauche conformers. The C=N groups were almost in one plane in the LB films. "  相似文献   

19.
The review demonstrates the recent theoretical and experimental progress in the understanding of penetration systems at the air-water interface in which a dissolved amphiphile (surfactant, protein) penetrates into a Langmuir monolayer. The critical review of the existing theoretical models which describe the thermodynamics of the penetration are critically reviewed. Although a rigorous thermodynamic analysis of penetration systems is unavailable due to their complexity, some model assumptions, e.g. the invariability of the activity coefficient of the insoluble component of the monolayer during the penetration of the soluble component results in reasonable solutions. New theoretical models describing the equilibrium behaviour of the insoluble monolayers which undergo the 2D aggregation in the monolayer, and the equations of state and adsorption isotherms which assume the existence of multiple states (conformations) of a protein molecule within the monolayer and the non-ideality of the adsorbed monolayers are now available. The theories which describe the penetration of a soluble surfactant into the main phases of Langmuir monolayers were presented first for the case of the mixture of the molecules possessing equal partial molar surfaces (the mixture of homologues), with further extension of the models to include the interesting process of the protein penetration into the monolayer of 2D aggregating phospholipid. This extension was based on a concept which subdivides the protein molecules into independent fragments with areas equal to those of the phospholipid molecule. Various mechanisms for the effect of the soluble surfactant on the aggregation of the insoluble component were considered in the theoretical models: (i) no effect on the aggregate formation process; (ii) formation of mixed aggregates; and (iii) the influence on the aggregating process via the change of aggregation constant, but without any formation of mixed aggregates. Accordingly depending on the mechanism, different forms of the equations of state of the monolayer and of the adsorption isotherms of soluble surfactant are predicted. Based on the shape of the experimental pi-A isotherms, interesting conclusions can be drawn on the real mechanism. First experimental evidence has been provided that the penetration of different proteins and surfactants into a DPPC monolayer in a fluid-like state induces a first order main phase transition of pure DPPC. The phase transition is indicated by a break point in the pi(t) penetration kinetics curves and the domain formation by BAM. Mixed aggregates of protein with phospholipid are not formed. These results agree satisfactorily with the predictions of the theoretical models. New information on phase transition and phase properties of Langmuir monolayers penetrated by soluble amphiphiles are obtained by coupling of the pi(t) penetration kinetics curves with BAM and GIXD measurements. The GIXD results on the penetration of beta-lactoglobulin into DPPC monolayers have shown that protein penetration occurs without any specific interactions with the DPPC molecules and the condensed phase consists only of DPPC.  相似文献   

20.
Betulinic acid (BA, a natural pentacyclic triterpene) can induce mitochondrial membrane damage and trigger the mitochondrial pathway of apoptosis in tumor cells. The monolayer behavior of binary systems of BA and cardiolipin (CL, a unique phospholipid found only in mitochondria membrane in animals) was studied by surface pressure-area (π-A) measurements and analyses and Atomic force microscopy (AFM) observation. The miscibility analysis presents that in mixed monolayers BA takes both tilted and nearly perpendicular orientations at surface pressure below 30 mN/m but only nearly perpendicular orientation at 30 mN/m. The thermodynamic stability analysis indicates that phase separation and repulsion occur in mixed BA/CL monolayers. The compressibility analysis shows that at 30 mN/m, 20% addition of BA does markedly translate the liquid-condensed CL monolayer to mixed BA/CL monolayer with the coexistence of liquid-condensed and liquid-expanded phases. The AFM images of supported monolayers give direct evidence of the conclusions obtained from the analyses of π-A isotherms. These results confirm that at high surface pressure near to real biologic situations, BA orients nearly perpendicularly with hydroxyl group toward water, causes phase separation and changes the permeability of CL film, which correlates with the mitochondrial membrane damage induced by BA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号