首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28912篇
  免费   2172篇
  国内免费   1245篇
化学   2976篇
晶体学   68篇
力学   8036篇
综合类   252篇
数学   16012篇
物理学   4985篇
  2024年   39篇
  2023年   285篇
  2022年   404篇
  2021年   491篇
  2020年   691篇
  2019年   625篇
  2018年   705篇
  2017年   747篇
  2016年   768篇
  2015年   698篇
  2014年   1159篇
  2013年   2182篇
  2012年   1374篇
  2011年   1684篇
  2010年   1324篇
  2009年   1786篇
  2008年   1793篇
  2007年   1829篇
  2006年   1619篇
  2005年   1307篇
  2004年   1240篇
  2003年   1200篇
  2002年   1045篇
  2001年   808篇
  2000年   803篇
  1999年   724篇
  1998年   699篇
  1997年   640篇
  1996年   549篇
  1995年   462篇
  1994年   378篇
  1993年   333篇
  1992年   330篇
  1991年   260篇
  1990年   220篇
  1989年   148篇
  1988年   144篇
  1987年   107篇
  1986年   111篇
  1985年   132篇
  1984年   120篇
  1983年   66篇
  1982年   105篇
  1981年   50篇
  1980年   34篇
  1979年   28篇
  1978年   22篇
  1977年   16篇
  1976年   15篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
2.
An efficient edge based data structure has been developed in order to implement an unstructured vertex based finite volume algorithm for the Reynolds-averaged Navier–Stokes equations on hybrid meshes. In the present approach, the data structure is tailored to meet the requirements of the vertex based algorithm by considering data access patterns and cache efficiency. The required data are packed and allocated in a way that they are close to each other in the physical memory. Therefore, the proposed data structure increases cache performance and improves computation time. As a result, the explicit flow solver indicates a significant speed up compared to other open-source solvers in terms of CPU time. A fully implicit version has also been implemented based on the PETSc library in order to improve the robustness of the algorithm. The resulting algebraic equations due to the compressible Navier–Stokes and the one equation Spalart–Allmaras turbulence equations are solved in a monolithic manner using the restricted additive Schwarz preconditioner combined with the FGMRES Krylov subspace algorithm. In order to further improve the computational accuracy, the multiscale metric based anisotropic mesh refinement library PyAMG is used for mesh adaptation. The numerical algorithm is validated for the classical benchmark problems such as the transonic turbulent flow around a supercritical RAE2822 airfoil and DLR-F6 wing-body-nacelle-pylon configuration. The efficiency of the data structure is demonstrated by achieving up to an order of magnitude speed up in CPU times.  相似文献   
3.
4.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   
5.
6.
The minimum k-enclosing ball problem seeks the ball with smallest radius that contains at least k of m given points. This problem is NP-hard. We present a branch-and-bound algorithm on the tree of the subsets of k points to solve this problem. Our method is able to solve the problem exactly in a short amount of time for small and medium sized datasets.  相似文献   
7.
8.
9.
10.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号