首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32830篇
  免费   3753篇
  国内免费   3771篇
化学   25349篇
晶体学   397篇
力学   1109篇
综合类   211篇
数学   4202篇
物理学   9086篇
  2024年   50篇
  2023年   399篇
  2022年   693篇
  2021年   1001篇
  2020年   937篇
  2019年   1055篇
  2018年   845篇
  2017年   828篇
  2016年   1338篇
  2015年   1381篇
  2014年   1565篇
  2013年   2407篇
  2012年   2815篇
  2011年   3021篇
  2010年   2007篇
  2009年   2112篇
  2008年   2264篇
  2007年   2090篇
  2006年   1791篇
  2005年   1654篇
  2004年   1801篇
  2003年   1362篇
  2002年   1338篇
  2001年   821篇
  2000年   588篇
  1999年   510篇
  1998年   403篇
  1997年   344篇
  1996年   375篇
  1995年   333篇
  1994年   246篇
  1993年   239篇
  1992年   214篇
  1991年   155篇
  1990年   158篇
  1989年   113篇
  1988年   111篇
  1987年   86篇
  1986年   90篇
  1985年   128篇
  1984年   107篇
  1983年   82篇
  1982年   63篇
  1981年   67篇
  1980年   54篇
  1979年   34篇
  1978年   28篇
  1977年   35篇
  1976年   26篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
3.
4.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
5.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号