首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7457篇
  免费   1397篇
  国内免费   1216篇
化学   5794篇
晶体学   110篇
力学   387篇
综合类   95篇
数学   937篇
物理学   2747篇
  2024年   19篇
  2023年   145篇
  2022年   229篇
  2021年   279篇
  2020年   325篇
  2019年   326篇
  2018年   293篇
  2017年   280篇
  2016年   356篇
  2015年   419篇
  2014年   450篇
  2013年   519篇
  2012年   675篇
  2011年   764篇
  2010年   551篇
  2009年   452篇
  2008年   558篇
  2007年   490篇
  2006年   424篇
  2005年   368篇
  2004年   298篇
  2003年   289篇
  2002年   368篇
  2001年   273篇
  2000年   159篇
  1999年   151篇
  1998年   90篇
  1997年   70篇
  1996年   76篇
  1995年   78篇
  1994年   56篇
  1993年   39篇
  1992年   39篇
  1991年   34篇
  1990年   40篇
  1989年   22篇
  1988年   12篇
  1987年   10篇
  1986年   6篇
  1985年   14篇
  1984年   7篇
  1983年   7篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
2.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
3.
4.
5.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
6.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
7.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
8.
9.
10.
Organic materials of D-π-A type MR-X (MR-1: p-dimethylaminophenylethenetrica-rbonitrile and MR-2: p-diphenylaminophenylethene tricarbonitrile) were designed and synthesized. The device with a sandwich structure shows good rectificative phenomena. The highest rectification ratio 10000 was achieved in device Cu/MR-1/Ag, and about 100 in other device M/MR-X/M (M: Cu, Ag). It has been found that rectificative phenomena exist only in the atmosphere-liquid interface region by means of liquid adsorption, and electric field could help form the oriented molecular film. __________ Translated from Journal of Fudan University (Natural Science), 2005, 44(4) (in Chinese)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号