首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2147篇
  免费   524篇
  国内免费   762篇
化学   1406篇
晶体学   81篇
力学   212篇
综合类   123篇
数学   411篇
物理学   1200篇
  2024年   3篇
  2023年   26篇
  2022年   85篇
  2021年   82篇
  2020年   77篇
  2019年   66篇
  2018年   78篇
  2017年   115篇
  2016年   68篇
  2015年   98篇
  2014年   141篇
  2013年   194篇
  2012年   161篇
  2011年   172篇
  2010年   222篇
  2009年   223篇
  2008年   231篇
  2007年   209篇
  2006年   208篇
  2005年   178篇
  2004年   122篇
  2003年   79篇
  2002年   84篇
  2001年   133篇
  2000年   94篇
  1999年   50篇
  1998年   23篇
  1997年   18篇
  1996年   25篇
  1995年   20篇
  1994年   15篇
  1993年   13篇
  1992年   18篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1973年   1篇
  1971年   1篇
  1964年   1篇
  1936年   1篇
排序方式: 共有3433条查询结果,搜索用时 15 毫秒
201.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   
202.
以芳香基三唑类杀菌剂三唑酮为先导物设计并合成了5个含N,N-二烷基二硫代氨基甲酸酯的芳香三唑类化合物, 通过元素分析、红外光谱、核磁共振氢谱和质谱对其结构进行了表征. 用X射线单晶衍射测定了[α-(4-甲氧基苯甲酰基)-2-(1,2,4-三唑-1-基)]乙基-N,N-二甲基二硫代氨基甲酸酯的晶体结构, 晶体属于三斜晶系, 空间群, 晶胞参数为: a=0.73482(15) nm, b=1.1051(2) nm, c=1.1209(2) nm, α=90.32(3)°, β=101.97(3)°, γ=105.13(3)°, V=0.8578(3) nm3, Z=2, Dc=1.357 g/cm3, F(000)=368, µ=0.324 mm-1. 生物测试结果显示这5种有机化合物都具有杀菌性和植物生长调节活性  相似文献   
203.
通过双吡唑甲基锂(LiCHPz2)与有机锡卤化物(R3SnX)的反应合成了一系列有机锡修饰的双吡唑甲烷配体(R3SnCHPz2).由于锡上取代基的不同,这些配体与W(CO)5THF反应时表现出了不同的反应方式.三芳基锡修饰的双吡唑甲烷与W(CO)5THF反应发生Sn-C(sp3)键对W(0)中心的氧化加成;而三苄基锡修饰的双吡唑甲烷与其反应时仅给出羰基取代产物[Bz3SnCHPz2W(CO)4].另外,二苯基苄基锡以及三(2-苯基-2-甲基丙基)锡修饰的双吡唑甲烷配体类似的反应导致配体的分解,产生单吡唑配体取代的羰基钨衍生物[W(CO)5PzH]以及脱有机锡的双吡唑甲烷四羰基钨衍生物[CH2Pz2W(CO)4].  相似文献   
204.
柠檬酸试剂中痕量无机阴阳离子的离子色谱法测定   总被引:5,自引:0,他引:5  
选用柱容量较高、亲水性较强的阴离子分析柱IonPac AS18,以30mmol/L KOH为淋洗液,等度淋洗分析了高浓度柠檬酸中的痕量无机阴离子。选用柱容量较高的阳离子分析柱IonPac CS12A,以H2SO4作淋洗液分析了柠檬酸试剂中的痕量阳离子。在所选色谱条件下,无需样品前处理,直接进样,电导检测,高浓度柠檬酸不影响痕量阴离子或阳离子的测定。方法具有良好的线性(r=0.9941~1.000),样品中所测离子峰面积的相对标准偏差(RSD)均在9.0%以下(n=7),回收率在82.7%~110%之间,检出限低于3.7μg/L。  相似文献   
205.
以4-硝基对苯腈,氨水和铜盐反应于在原位水热条件下合成了二(2,4-二(对硝基苯)-1,3,5-环戊二烯铜配合物,通过单晶X射线衍射,元素分析,红外,核磁光谱和热重分析等手段对其进行了表征。结构分析表明,铜与四个源自原位合成的配体上的氮原子配位形成平面四边形构型。基于密度泛函的理论计算对配合物的热力学稳定性进行了阐释。  相似文献   
206.
Cu/Zn/TiO2负载型催化剂上CO2加氢合成甲醇   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法和浸渍法制备Cu/Zn/TiO2负载型催化剂,研究了不同Cu、Zn负载量对催化剂性能的影响,采用BET、XRD、TPR对催化剂进行了表征.考察了反应温度、压力和催化剂组成对CO2加H2催化合成甲醇的影响.  相似文献   
207.
二噁英、多溴联苯醚和多氯联苯同时测定方法的研究   总被引:1,自引:0,他引:1  
本实验以美国环保署1613B、1614和1668A等标准方法为基础,建立了同一样品中二噁英、多溴联苯醚和多氯联苯的同位素稀释-多层色谱柱净化-高分辨气质联用-高通量同时分析方法.该方法利用弗罗里土对二噁英组分吸附能力强的特点,采用不同极性的溶剂淋洗,先实现二噁英组分和其它两个组分的分离,再利用多溴联苯醚更易保留在硝酸银硅胶(10%)柱上的特点,实现了多溴联苯醚和多氯联苯两类化合物的分离.实验优化了样品前处理过程,纯化过程中去除了大量干扰物质,同时将三类化合物在前处理中进行分离,消除了相互干扰,实现了准确定量.纯化效果和检测限均符合美国环保署相关标准的要求.通过标准参考物的比对和实际样品的分析验证了方法的可靠性和结果的准确性.  相似文献   
208.
以醋酸铜为前驱物, 采用浸渍法负载后进行热处理使醋酸铜热解, 获得了负载型无氯Cu2O/AC(活性炭)催化剂, 并通过催化甲醇直接气相氧化羰基化合成碳酸二甲酯(DMC). 在氮气和惰性气体气氛下, 一水合醋酸铜Cu(CH3COO)2·H2O在30~450 ℃范围内产生3个失重过程, 其中在150~300 ℃范围内Cu(CH3·COO)2热解生成Cu2O; 而在300~450 ℃范围内生成单质Cu. 在200~350 ℃范围内, 将Cu(CH3COO)2·H2O/AC加热处理4 h后, 催化剂上逐步形成了Cu2O, 到350 ℃时, 水合醋酸铜几乎全部转化为Cu2O, 并有极少量单质Cu形成. 在300~350 ℃热处理4 h后, 催化剂中铜主要以Cu2O形式存在, 并表现出良好的氧化羰基化催化活性. 在n(CO)∶n(MeOH)∶n(O2)=4∶10∶1及SV=5600 h-1条件下, 于300 ℃热处理4 h所制备的催化剂的甲醇转化率达到6.21%, DMC的时空收率为128.16 mg·g-1·h-1, 选择性为64.26%.  相似文献   
209.
度洛西汀的合成进展   总被引:6,自引:0,他引:6  
介绍了近年来抗抑郁新药度洛西汀的各种合成方法,并评述了其优缺点。参考文献13篇。  相似文献   
210.
提出了同位素稀释-气相色谱-质谱法测定白酒中23种邻苯二甲酸酯类化合物含量的方法。样品用正己烷-乙酸乙酯(1+1)混合液提取后,经DB-5MS毛细管色谱柱分离,采用电子轰击离子源选择离子反应监测模式进行质谱测定,同位素内标法进行定量分析。23种邻苯二甲酸酯类化合物的线性范围在0.2~3.0mg·L-1之间,测定下限(10S/N)在0.05~0.1mg·kg-1之间。加标回收率在73.2%~122%之间,相对标准偏差(n=6)在0.49%~11%之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号