首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1196篇
  免费   322篇
  国内免费   496篇
化学   926篇
晶体学   41篇
力学   88篇
综合类   74篇
数学   188篇
物理学   697篇
  2024年   4篇
  2023年   18篇
  2022年   51篇
  2021年   40篇
  2020年   44篇
  2019年   45篇
  2018年   30篇
  2017年   77篇
  2016年   48篇
  2015年   66篇
  2014年   76篇
  2013年   116篇
  2012年   88篇
  2011年   90篇
  2010年   108篇
  2009年   106篇
  2008年   125篇
  2007年   78篇
  2006年   122篇
  2005年   89篇
  2004年   72篇
  2003年   66篇
  2002年   51篇
  2001年   59篇
  2000年   71篇
  1999年   35篇
  1998年   20篇
  1997年   18篇
  1996年   19篇
  1995年   15篇
  1994年   22篇
  1993年   17篇
  1992年   21篇
  1991年   10篇
  1990年   15篇
  1989年   14篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1971年   2篇
  1965年   3篇
  1936年   1篇
排序方式: 共有2014条查询结果,搜索用时 31 毫秒
41.
基于药效团模型的DHODH抑制剂构效关系研究   总被引:1,自引:0,他引:1  
利用药效团模型研究二氢乳清酸脱氢酶(Dihydroorotate dehydrogenase,DHODH)抑制剂的构效关系,为DHODH抑制剂的虚拟筛选提供新的方法.以31个具有DHODH抑制活性的化合物为训练集化合物,半数抑制浓度(IC50)范围为7~63000 nmol/L,利用Catalyst/HypoGen算法构建DHODH抑制剂药效团模型,通过对训练集化合物多个构象进行叠合,提取药效团特征及三维空间限制构建药效团模型.利用基于CatScramble的交叉验证方法及评价模型对已知活性化合物的活性预测能力,确定较优药效团模型.模型包含1个氢键受体、3个疏水中心,表征了受体配体相互作用时可能发生的氢键相互作用、疏水相互作用和π-π相互作用,4个药效特征在三维空间的排列概括了DHODH抑制剂产生活性的结构特点.所得较优模型对训练集化合物及测试集化合物的计算活性值与实验活性值的相关系数分别为0.8405和0.8788.利用药效团模型对来源于微生物的系列化合物进行虚拟筛选,筛选出59个预测活性较好的化合物,可作为进一步药物研发的候选化合物.  相似文献   
42.
依据生物活性叠加原理,以邻羟苯基和苯基吡唑为分子核心,构建了6种未见报道的N-[(1-芳基-3-苯基-吡唑-4-基)次甲基]-2-羟基苯甲酰肼衍生物.以芳胺为原料,经重氮化、还原、与苯乙酮缩合及Vilsmeier-Haack反应制得1-芳基-3-苯基-4-甲酰基吡唑,再与水杨酰肼反应制得目标化合物,其结构经IR,1HNMR和元素分析等验证.探讨了制备中间体(3a~3f)的反应机理,结果表明,1位芳环上取代基对关环反应有显著影响,供电基有利于关环反应的进行,吸电基则恰恰相反.抗菌活性测试表明,质量分数为0.01%的化合物对大肠杆菌和白色念珠菌的抑菌率高达100%,有极强的抑菌活性,对金黄色葡萄球菌的抑菌率达70%以上,有一定的抑菌活性,是一类极具潜力的抗真菌和抗革兰氏阴性菌的化合物.构效分析结果表明,1位芳基中引入Cl和Br等卤原子,能显著增强化合物的抑菌活性,而引入NO2和CH3基团,则会降低其抑菌活性.  相似文献   
43.
药物释放环境对层状复合氢氧化物载体的影响   总被引:2,自引:0,他引:2  
以层状复合氢氧化物(LDH)为载体用离子交换法制取乙酰苯甲酸(ASP)的插层复合物LDH-ASP, 通过体外释放实验和固相XRD、FT-IR、TEM、TG-DSC及BET-N2比表面积表征, 研究了药物释放环境对载体结构的影响. 结果表明释放环境pH为4.30-6.89时, 载体的层状特征减弱但晶体类型不变; pH为2.48-4.30时, H2PO-4对LDH的嫁接反应引起层状化合物向复杂磷酸盐转化; 随环境pH由6.89降低至2.48, 载体纯度下降, 晶态性征减弱,微孔吸附活性降低.  相似文献   
44.
近年来,共轭聚合物荧光纳米粒子因其优异的光学性能,在化学、医学和环境科学等研究领域显示了极其广阔的应用前景.相比于传统无机半导体荧光纳米材料,共轭聚合物荧光纳米粒子具有结构多样性、功能可设计性、生物相容性好等显著优势.本文从共轭聚合物荧光粒子的制备方法、光学性能、表面功能化修饰出发,重点讨论了近年来共轭聚合物纳米粒子作为荧光探针在细胞成像及生物化学检测方面的研究进展,阐述了当前研究的主要发展方向和仍需解决的问题.  相似文献   
45.
本文以四氟对苯二甲酸(H2tfbdc)和2,2′-联吡啶(bpy)为配体,合成了2个锌(Ⅱ)的配合物[Zn2(bpy)4(Htfbdc)2(tfbdc)](1)and[Zn(bpy)(H2O)2(tfbdc)](2)。并用元素分析、红外光谱、X-射线单晶衍射结构分析、热重分析等对其进行了表征。化合物1和2均属于三斜晶系,空间群为P1。配合物1和2中的锌(Ⅱ)离子分别位于畸变的八面体和畸变的三角双锥构型中。配合物1为双核结构,它们通过分子间氢键进一步形成一个二维的结构;配合物2是一个单核的两性离子,两性离子间通过氢键形成一个三维的空间网状超分子结构。考察了两种配合物的固体荧光性质。  相似文献   
46.
利用改进型的溶胶-凝胶法,制得了由锐钛矿相纳米颗粒组成的TiO2多孔微纳小球。通过调节前驱物浓度,合成出粒径可控的尺寸分别为100,175,225,475 nm的TiO2微纳小球,并通过电泳沉积法将合成出的小球作为光散射层引入到染料敏化太阳电池(DSSC)中。由于这种微纳小球在具备良好的光散射性能的同时也具备较高的染料吸附量,因此相较于基于纳米颗粒的单层结构的DSSC拥有更高的光电转换效率。通过比较分析,粒径尺寸为475 nm的微球作为光散射层的DSSC光电转换效率可以达到6.3%,较之于基于纳米颗粒的DSSC提高了30%。  相似文献   
47.
 提出了以吸附和催化原理灭活病毒的设想,旨在开发出对病毒有过滤、吸附及灭活作用的高效非特异性催化材料,应用于各种防护设施,有效控制非典型肺炎(SARS)的传播.采用与SARS病毒相似的副流感病毒作为模拟对象,进行了吸附及灭活该病毒的催化材料研究,并考察了催化材料对哺乳动物细胞的毒性.结果表明,病毒气溶胶的阻留及吸附结果与基于DNA吸附的色谱分析结果相一致;部分材料可以强烈地吸附病毒(100%),甚至在强烈振荡下并洗脱至第3次,病毒也不能脱附;一些材料不仅可以吸附病毒,而且强烈振荡后的洗脱液虽然表现出一定的血凝效价,但接种鸡胚后,病毒并不增殖,说明材料具有明显的催化病毒灭活性能;对细胞毒性极低的材料可以用在与人体接触的防护材料和设施中.筛选出的性能优异的催化材料,拟进一步考察其对SARS病毒的灭活作用.  相似文献   
48.
应用AES,LEED,XPS和TDS研究了Rh(100)上Sm膜和Sm/Rh表面合金以及CO在这两类模型表面的吸附与反应.室温下Sm在Rh(100)上的生长遵从SK模式,Sm膜经900K高温退火后可形成有序表面合金.在室温制备的Sm膜/Rh(100)表面上,室温下CO在Sm上的吸附改变了表面结构,生成SmOx和表面碳.随着Sm覆盖度的增加,低温脱附峰(α-CO)面积迅速下降,且峰温向高温方向位移;表明Sm的空间位阻和电子效应同时起作用.在Sm/Rh合金表面上,CO在约590K出现新的脱附峰,可归属为受Sm电正性修饰的Rh原子上的CO脱附峰  相似文献   
49.
随机波动率跳-扩散模型下外汇期权本外币对称公式   总被引:1,自引:0,他引:1  
外汇期权本外币对称公式表示本币看涨/看跌期权与外币看跌/看涨期权用同类定价函数表示的等价关系.通过测度变换法指出本币测度下的Bates模型和Heston模型在外币测度下保持模型类型不变,并且由此证明这两个模型下的本外币对称公式,其中的定价函数由Attari公式给出.数值分析给出了本外币对称公式的应用示范,并且详细分析了Attari公式的计算速度优势.  相似文献   
50.
利用电化学现场表面增强拉曼光谱技术(SERS)研究了咪唑在锌表面的成膜和缓蚀行为, 讨论了电位和pH值对咪唑分子和金属表面作用的影响. 锌电极上的表面拉曼光谱研究结果表明, 中性溶液中咪唑对锌的缓蚀作用明显, 它通过氮端垂直吸附在锌表面, 从而阻止锌的腐蚀, 其吸附取向不随电位的变化而改变; 在碱性溶液中咪唑和锌的作用较弱, 而且电位变化可以使其吸附取向发生改变, 在较正电位下咪唑以氮端垂直吸附, 在较负电位下以咪唑环倾斜吸附.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号