首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang  Lantao  Zeng  Qiang  Yang  Haishi  Wang  Liming  Long  Guorong  Ding  Xiaoxi  Shao  Yimin 《Nonlinear dynamics》2022,109(3):1591-1615

The effect of gear contact state change due to shaft misalignment on meshing stiffness is usually neglected in the traditional stiffness calculation model with misalignment error, the further influence mechanism of shaft misalignment on gear dynamic characteristics is also unclear. To address these shortcomings, a new mesh stiffness calculation model with misaligned gear considering the effects of tooth contact state is proposed by combining the improved loaded tooth contact analysis (LTCA) model. Then the effects of tooth contact state changes aroused by shaft misalignment on the meshing stiffness excitation are investigated. Moreover, a dynamic model of the misaligned gear system with 8 degrees of freedom (DOF) is established, and based on which the dynamic characteristics of the gear system are investigated and verified by experiment. The study results indicate that the proposed model can be used to evaluate the stiffness excitation and dynamic characteristics of the misaligned gear system with the tooth contact state taken into consideration. This study can provide a theoretical method for evaluating and identifying shaft misalignment errors.

  相似文献   

2.
Face gear drive is one of the main directions of research for aeronautical transmission for its advantages, but the vibration induced gear noise and dynamic load are rarely involved by researchers. The present work examines the complex, nonlinear dynamic behavior of a 6DOF face gear drive system combining with time varying stiffness, backlash, time varying arm of meshing force and supporting stiffness. The mesh pattern of the face gear drive system is analyzed when the modification strategy is applied and the effect of modification on the dynamics response, the time varying arm of meshing force based on the TCA is deduced. The dynamic responses of the face gear drive system show rich nonlinear phenomena. Nonlinear jumps, chaotic motions, period doubling bifurcation and multiple coexisting stable solutions are detected but different from the spur and bevel gear dynamics, which don’t occur near primary and higher harmonic resonance.  相似文献   

3.
Time-varying mesh stiffness is one of the main excitation sources of a gear system, and it is also considered as an important factor for the vibration and noise of gears. Thus, this excitation is usually taken as an input into the gear dynamic model to obtain the system dynamic responses. However, the mesh stiffness of a gear pair is actually nonlinear with respect to the dynamic mesh force (DMF) that fluctuates during the operation of gears. Therefore, the dynamic model of gears with the quasi-static mesh stiffness calculated under a constant load is not accurate sufficiently. In this paper, a dynamic model of spur gear is established with considering the effect of the force-dependent time-varying mesh stiffness, backlash and profile deviation. Due to the nonlinear relationship between the mesh stiffness and the load for each tooth pair, it needs first to determine the load sharing among tooth pairs and then calculate the overall mesh stiffness of the gear pair. As the mesh stiffness and DMF are related, the mesh stiffness is no longer directly taken into the gear dynamic model as an input, but is jointly solved with the numerical integration process using the gear dynamic model. Finally, the dynamic responses predicted from the established gear dynamic model are compared with the experimental results for validation and compared with the traditional models to reveal their differences. The results indicate that the established dynamic model of spur gear transmission has a wider application range than the traditional models.  相似文献   

4.
Gear tooth root crack, as one of the popular gear tooth failures, is always caused by the dynamic load or excessive load applied to the tooth. It will devastate the working performance of the gear system, by problems such as vibration and noise, or even lead to a broken tooth, which will stop the normal working process of the gear system. It has attracted wide attention from researchers. However, the previous studies focused their concentration only on the mesh stiffness reduction due to tooth root crack, while the tooth plastic inclination due to tooth bending damages like gear tooth root crack is seldom considered. In this paper, a tooth plastic inclination model for spur gear with tooth root crack is developed by regarding the cracked tooth as a cantilever beam. It influences not only the displacement excitation but also the mesh stiffness and load-sharing factor among tooth pairs in mesh. The simulation results obtained by incorporating the tooth plastic inclination deformation model together with the tooth root crack model into a 21-Degree-of-Freedom planetary gear dynamic model indicate that the tooth plastic inclination has a significant effect on the performance of the gear system rather than the mesh stiffness reduction due to tooth root crack.  相似文献   

5.
Gou  Xiang-Feng  Wang  Hui  Zhu  Ling-Yun  Que  Hong-Bo  Shi  Jian-Fei  Li  Zheng-Fa 《Meccanica》2021,56(12):2935-2960

Helical gears are generally considered to be more stable than spur gears. But rattling of the helical gear transmission is found in the engineering practice. The torsional dynamics equations of helical gear pair in high-speed railway gearbox are established in order to reveal the rattling mechanism of helical gear transmission. Double and three teeth pair drive-side meshing are considered. The multi-state meshing zone, load distribution rate and time-varying stiffness determined by contact ratio are analyzed and calculated. The dynamic characteristic transition process of the system is analyzed according to the bifurcation diagrams and the corresponding top Lyapunov exponent (TLE) diagrams, phase portraits, Poincaré maps and time history spectrums of dynamic meshing force based on the calculation of these parameters. The tooth disengagement, tooth back-side contact and their parameter range are found. This study can provide theoretical basis for rattling suppression and transmission stability improvement of helical gear pair.

  相似文献   

6.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

7.
为探究动载荷作用下变位齿轮系统的热弹流润滑特性,综合考虑齿轮变位和时变啮合刚度的影响,基于动力学理论,建立了齿轮的六自由度摩擦动力学模型,分析振动与静载荷作用下变位齿轮系统的热弹流润滑特性. 研究表明:与其他传动类型相比,正传动齿轮系统的润滑效果最佳,轮齿间可以形成较厚的润滑油膜,轮齿间的摩擦系数、油膜的最高温升最小,并且,随着两齿轮变位系数和的增大,润滑状况不断得到改善,热胶合承载能力增强;变位系数增加使齿轮系统的刚度增大,但同时降低了油膜的刚度.   相似文献   

8.
宁志远  白争锋  蒋鑫  王思宇 《力学学报》2022,54(4):1125-1135
行星齿轮磨损会导致齿轮齿侧间隙非线性增大、传动精度下降、齿面冲击力增大, 进而会导致齿轮传动系统振动加剧, 因此需要对行星齿轮的齿面磨损与动力学耦合特性进行研究. 本文构建了齿轮非线性磨损与考虑齿轮齿侧间隙的非线性动力学耦合计算模型, 对行星传动齿轮磨损动力学特性进行了研究. 首先建立齿轮啮合非线性动力学模型, 获得齿轮运行过程中的非线性啮合力; 进一步将非线性啮合力与齿轮齿面磨损模型相结合, 研究齿轮齿面磨损分布规律; 并根据齿轮磨损后的齿侧间隙对齿面重构, 同时对齿轮动力学模型进行更新; 进而得到行星齿轮传动中动态啮合力和磨损特性的变化趋势, 并获得齿轮传动系统齿轮齿向振动响应. 数值计算结果表明, 行星齿轮磨损导致齿轮在单?双齿交替啮合时产生的冲击增大, 同时太阳轮?行星轮啮合齿对对磨损较为敏感, 齿面啮合条件剧烈恶化, 是造成行星齿轮传动性能退化的主要原因, 本文研究结果为行星齿轮传动系统运行状态评估与可靠性预测提供了理论基础.   相似文献   

9.
In this paper, the nonlinear vibration characteristics of geared rotor bearing system and the interactions among gears, shafts, and plain journal bearings were studied. First, with the consideration of backlash, transmission error, time-varying mesh stiffness, and layout parameters, the dynamic model of geared rotor bearing system featuring confluence transmission was proposed. The nonlinear oil-film forces were computed with the Reynolds equation for finite-length journal bearings. Second, the responses of meshing vibration and bearing vibration were discussed. The numerical results revealed that the system exhibited a diverse range of periodic, sub-harmonic, and chaotic behaviors. Under different ranges of rolling frequency, the system got into chaos state through different roads. Moreover, in lower frequency, meshing vibration showed coexist of different periodic motions. Lastly, couplings of nonlinear oil-film force and nonlinear gear mesh force were discussed through a range of rolling frequencies. Gear-bearing dynamic interactions were demonstrated through the analysis of dynamic gear loads and dynamic bearing loads, and the coupling effect behaved different when rolling frequency changed.  相似文献   

10.
The presence of undercut at the tooth root, non-equal addendum on pinion and wheel, non-standard tooth height or non-standard center distance may have decisive influence on the load distribution along the line of contact of spur and helical gear teeth. The curve of variation of the meshing stiffness along the path of contact, quite symmetric respect the midpoint of the interval of contact, loses its symmetry for non-standard geometries and operating conditions. As a consequence, the critical contact points for bending and wear calculations may be shifted from their locations for standard gears. In this paper, a non-uniform model of load distribution along the line of contact of standard spur and helical gears, obtained from the minimum elastic potential criterion, has been enhanced to fit with the meshing conditions of the above mentioned non-standard cylindrical gear pairs. The same analytical formulation of the initial model may be used for the non-standard gears by considering appropriate values of a virtual contact ratio, which are also presented in the paper.  相似文献   

11.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

12.
渐开线斜齿轮非稳态弹流润滑数值模拟研究   总被引:13,自引:10,他引:3  
建立了渐开线斜齿轮啮合的弹流润滑计算模型,将斜齿圆柱齿轮啮合的齿面接触等效为有限长线接触的弹流润滑问题.考虑斜齿轮啮合的实际因素,将斜齿轮啮合过程中的等效曲率半径和齿面载荷的变化反映到弹流润滑计算模型中,应用统一Reynolds方程方法求得轮齿在1个完整啮合周期内的瞬时弹流润滑数值解.结果表明:斜齿轮啮合线上各点处的膜厚、压力均有较大不同,各接触点处的油膜厚度受综合曲率半径的影响较大;斜齿轮传动非稳态效应相对较弱;小齿轮齿根附近和节点位置处润滑状态较差;适当增大压力角可以改善齿轮的润滑.  相似文献   

13.
《力学快报》2022,12(2):100324
The circumferential vibration of a gear pair is a parametric excitation caused by nonlinear tooth stiffness, which fluctuates with meshing. In addition, the vibration characteristics of the gear pair become complicated owing to the tooth profile error and backlash. It is considered that the circumferential vibration of the gear pair is affected by the torsional vibration of the shafts. It is important to understand quantitatively the vibration characteristics of the gear system considering the shafts. Therefore, the purpose of this research was to clarify the nonlinear vibration characteristics of a gear pair considering the influence of the shafts using theoretical methods. To achieve this objective, calculations were performed using equations of motion in which the circumferential vibration of the gear pair and the torsional vibration of the shafts were coupled. The nonlinear tooth stiffness was represented by a sine wave. The influence of tooth separation was considered by defining a nonlinear function using backlash and the tooth profile error. For the numerical calculations, both stable and unstable periodic solutions were obtained by using the shooting method. The effect of the shafts on the gear system vibration were clarified by comparing the results in the cases in which the shaft was not considered, one shaft was considered, and both shafts were considered.  相似文献   

14.
A nonlinear time-varying dynamic model for right-angle gear pair systems, considering both backlash and asymmetric mesh effects, is formulated. The mesh parameters that are characteristically time-varying and asymmetric include mesh stiffness, directional rotation radius and mesh damping. The period-one dynamic motions are obtained by solving the dimensionless equation of gear motion using an enhanced multi-term harmonic balance method (HBM) with a modified discrete Fourier Transform process and the numerical continuation method. The accuracy of the enhanced HBM solution is verified by comparison of its results to the more computational intensive, direct numerical integration calculations. Also, the Floquet theory is applied to determine the stability of the steady-state harmonic balance solutions. Finally, a set of parametric studies are performed to determine quantitatively the effects of the variation and asymmetry in mesh stiffness and directional rotation radius on the gear dynamic responses.  相似文献   

15.
为探究齿轮磁流体润滑与动力学的耦合效应,考虑外磁场及时变啮合刚度的激励作用,建立齿轮磁流体润滑模型与动力学模型,分析磁感应强度对磁流体黏度、油膜刚度、动载荷分布以及润滑特性的影响. 研究结果表明:适当增大磁感应强度并使磁流体中的磁性颗粒达到其饱和磁化强度,可以减小动态传递误差、齿轮副振动速度以及动载荷,改善啮入冲击和换齿冲击;较大的磁感应强度可以降低油膜温升,增大油膜厚度并使油膜压力和油膜厚度的振幅减小且加快其趋于稳定的速度,在改善润滑效果的同时并在一定程度上抑制齿轮系统振动和噪声的产生.   相似文献   

16.
为了研究双联行星齿轮在实际设计参数下,其相对角度偏差对复合行星传动系统动力学特性的影响,采用集中参数法建立了3K-I型行星齿轮动力学模型,模型中将双联行星齿轮的相对角度偏差转化为啮合副齿侧间隙的变化,考虑了双联齿轮角度偏差、轮齿侧隙和时变啮合刚度等非线性因素,采用龙格库塔法求解了系统的时域响应并计算其均载系数。分析了不同工况、偏差下系统的动态特性。结果表明,存在双联行星轮角度偏差时,轻载下更容易发生齿轮的脱齿与冲击,系统的均载系数随着双联行星轮角度偏差差值及系统的负载降低而增大,各组行星轮角度偏差分布越集中,角度偏差对系统均载特性的影响越小;角度偏差分布同号时,对系统中某一对齿轮的承载影响明显;角度偏差分布异号时,对系统均载特性的影响最大。  相似文献   

17.
This study focuses on the bifurcation characteristics of the four degree-of-freedom gear system with local spalling defect to explore the spalling nonlinear dynamic mechanism. The dynamic model of the gear system with spalling defect, time-variant mesh stiffness, and nonlinear clearance is established to investigate the effect of spalling defect on mesh stiffness and dynamic bifurcation. The primary resonance and internal resonance responses of the spalling model are analyzed by the averaging method, and the bifurcation characteristics with the evolvement of spall and internal excitation are studied by employing the singularity theory for the two-state variable system, which reveal the different bifurcation characteristics caused by the spalling defect. The results obtained herein can provide a theoretical basis to spalling fault diagnosis of gearbox.  相似文献   

18.
Owing to the present of manufacturing errors, the dynamic floating characteristics of herringbone planetary gear train (HPGT) can be changed in comparison with the original ideal design. In this research, based on the actual structure of herringbone gears, taking into consideration manufacturing eccentric errors and tooth profile errors, bearing deformation, time-varying meshing stiffness, gyroscopic effect, and so on, a novel and generalized bending–torsional–axial coupled dynamic model of a herringbone planetary gear train is presented to investigate the dynamic floating performances applying the lumped-parameter approach. The model is capable of being employed for the vibration behavior analysis of the HPGT with different types of manufacturing errors and arbitrary number of planets. The variable step Runge–Kutta algorithm is utilized to compute the dynamic responses of the HPGT system. In combination with the proposed computational approach of the component floating displacement amount, the relationship among manufacturing errors, component floating displacements, and different floating forms is obtained, and the effects of manufacturing errors on the HPGT dynamic floating performances are discussed. Meanwhile, sun gear radial floating trajectories in two cases of sun gear float and non-float are compared and analyzed. Results indicate that the manufacturing error and component float prominently affect the dynamic floating characteristics in the HPGT system.  相似文献   

19.
Xu  Zhiliang  Yu  Wennian  Shao  Yimin  Yang  Xiaodong  Nie  Chunhui  Peng  Dingqiang 《Nonlinear dynamics》2022,109(3):1551-1569
Nonlinear Dynamics - The positioning errors of a gear pair will directly affect the mesh position and the corner contact (via the tooth pair separation distance) which should be considered for...  相似文献   

20.
Parametric uncertainties play a critical role in the response predictions of a gear system. However, accurately determining the effects of the uncertainty propagation in nonlinear time-varying models of gear systems is awkward and difficult. This paper improves the interval harmonic balance method (IHBM) to solve the dynamic problems of gear systems with backlash nonlinearity and time-varying mesh stiffness under uncertainties. To deal with the nonlinear problem including the fold points and uncertainties, the IHBM is improved by introducing the pseudo-arc length method in combination with the Chebyshev inclusion function. The proposed approach is demonstrated using a single-mesh gear system model, including the parametrically varying mesh stiffness and the gear backlash nonlinearity, excited by the transmission error. The results of the improved IHBM are compared with those obtained from the scanning method. Effects of parameter uncertainties on its dynamic behavior are also discussed in detail. From various numerical examples, it is shown that the results are consistent meanwhile the computational cost is significantly reduced. Furthermore, the proposed approach could be effectively applied for sensitivity analysis of the system response to parameter variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号