首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 828 毫秒
1.
在齿轮传动系统中,齿轮啮合刚度对振动、冲击、齿轮动力学特性分析以及接触应力计算有重要影响. 根据双渐开线齿轮齿廓啮合特点,基于弹流润滑理论,建立了双渐开线齿轮传动油膜刚度计算模型,研究双渐开线齿轮传动油膜刚度变化规律. 采用对比法分析了双渐开线齿轮与同参数普通渐开线齿轮传动油膜刚度差异,并研究双渐开线齿轮齿廓参数和工况条件对油膜刚度的影响. 分析表明:双渐开线齿轮由于轮齿分阶的影响,与同参数渐开线齿轮传动油膜刚度相比有较大差异;双渐开线齿轮传动油膜刚度随齿腰高度系数的增大而减小,齿腰切向变位系数变化时,油膜刚度基本不变;工况条件变化时,双渐开线齿轮传动油膜刚度随转速的增大而减小,随载荷增量因子的增大而增大.   相似文献   

2.
为探究齿轮磁流体润滑与动力学的耦合效应,考虑外磁场及时变啮合刚度的激励作用,建立齿轮磁流体润滑模型与动力学模型,分析磁感应强度对磁流体黏度、油膜刚度、动载荷分布以及润滑特性的影响. 研究结果表明:适当增大磁感应强度并使磁流体中的磁性颗粒达到其饱和磁化强度,可以减小动态传递误差、齿轮副振动速度以及动载荷,改善啮入冲击和换齿冲击;较大的磁感应强度可以降低油膜温升,增大油膜厚度并使油膜压力和油膜厚度的振幅减小且加快其趋于稳定的速度,在改善润滑效果的同时并在一定程度上抑制齿轮系统振动和噪声的产生.   相似文献   

3.
区别于基于半空间理论的传统直齿轮弹流润滑模型,本文基于有限长空间解建立考虑轮齿自由端面影响的渐开线直齿轮有限长弹流润滑模型. 采用叠加法构造自由端面,矩阵法和半解析法求解自由端面的影响,快速傅里叶变换算法加速齿面弹性变形计算;采用统一Reynolds方程法求解油膜压力和油膜厚度. 以啮合节点为特征位置,分析比较不同压力角下自由端面对直齿轮弹流润滑的影响. 结果表明:与半空间模型比较,考虑自由端面后端面峰值压力降低,压力分布更均匀,最小油膜厚度增大;增大轮齿压力角,节点压力水平减小,油膜厚度增大;当压力角不同时,自由端面对齿轮弹流润滑压力峰值的影响基本相当,对最小膜厚的影响较大.   相似文献   

4.
渐开线斜齿轮非稳态弹流润滑数值模拟研究   总被引:13,自引:10,他引:3  
建立了渐开线斜齿轮啮合的弹流润滑计算模型,将斜齿圆柱齿轮啮合的齿面接触等效为有限长线接触的弹流润滑问题.考虑斜齿轮啮合的实际因素,将斜齿轮啮合过程中的等效曲率半径和齿面载荷的变化反映到弹流润滑计算模型中,应用统一Reynolds方程方法求得轮齿在1个完整啮合周期内的瞬时弹流润滑数值解.结果表明:斜齿轮啮合线上各点处的膜厚、压力均有较大不同,各接触点处的油膜厚度受综合曲率半径的影响较大;斜齿轮传动非稳态效应相对较弱;小齿轮齿根附近和节点位置处润滑状态较差;适当增大压力角可以改善齿轮的润滑.  相似文献   

5.
基于载荷分担理论的渐开线斜齿轮热混合弹流润滑分析   总被引:5,自引:4,他引:1  
沿接触线把斜齿轮分成许多小薄片,每一薄片看成具有当量角速度的直齿轮,根据欧拉方程得到任一接触点处的曲率半径和表面速度.然后基于载荷分担、弹流润滑和粗糙线接触理论,建立了考虑表面粗糙度的斜齿轮传动混合热弹流润滑模型.研究了斜齿轮传动稳态载荷分布下牛顿流体和Carreau流体时的润滑特性.结果表明:牛顿流体和Carreau非牛顿流体模型下,中心油膜厚度、油膜承载比例、油膜温升随时间和接触线的变化规律相同.牛顿流体下的摩擦系数较工程实际偏大.Carreau非牛顿流体模型下摩擦系数和工程实际相符,其随接触线啮合位置的变化规律与油膜厚度正好相反.  相似文献   

6.
考虑摩擦动力学特性的渐开线齿轮润滑分析   总被引:2,自引:2,他引:0  
以渐开线齿轮为研究对象,综合考虑齿面摩擦、油膜刚度和阻尼的影响,将摩擦动力学特性和齿面形貌考虑到有限长线接触弹流润滑理论(EHL)中,采用多重网格数值求解法获得了渐开线齿轮在不同啮合位置处的动载荷分布,压力与膜厚分布,并对比分析了干摩擦与润滑条件下压力分布的不同特征以及动载荷对油膜分布的影响.计算结果表明:低速时,动载荷接近稳态分布,在单双齿交替点有明显的高频冲击,随着转速的增加,动载荷变化趋于平缓;与干摩擦相比,润滑油膜可以减小最大压力峰值以及入口区和出口区的压力,但对粗糙峰凹谷处压力有所增加.沿啮合线方向,压力在节点位置附近达到最大值,膜厚受动载荷的影响较小,近似呈线性增加趋势.  相似文献   

7.
油膜弹流润滑在齿轮传动中有着非常重要的作用,为得到油膜润滑作用下的齿轮啮合响应,基于ABAQUS/STANDARD的静态计算结果,首先提取了仅有齿轮啮合的齿面接触刚度,再结合油膜刚度得到了齿轮和油膜的综合接触刚度,并以此综合刚度作为接触属性关系进行齿轮的静动态运动响应计算。此外,对齿轮啮合时出现的接触区域(接触斑)不连续现象也进行了分析。最终结果表明考虑油膜润滑作用时,齿轮面的最大接触应力比无润滑作用时下降了30%左右,而齿根处最大拉应力则下降了6.14%。本方法为齿轮动力学分析和齿轮的优化设计提供了基础条件。  相似文献   

8.
球轴承启停过程的瞬态热混合润滑分析   总被引:3,自引:1,他引:2  
建立了角接触球轴承的几何和数学模型,通过求解考虑了热效应和时变效应的Reynolds方程,对启动和制动过程中的球轴承瞬态热混合润滑问题进行了分析,考虑了不同加速度启动工况下的瞬态热混合润滑情况.结果表明:启动过程中,随转动速度的增大,最小膜厚增大,轴承逐渐由边界润滑进入弹流润滑状态;不同滑滚比下进入弹流润滑状态的时间有所不同,随着滑滚比的增大,进入弹流润滑的时刻有所推迟,轴承处于同一转速条件下的油膜厚度变小;随着转速的增大,油膜温度升高,最高油膜温度增长幅度减小;加速度的增大使边界润滑消失的时间提前,随着转速的增加,油膜温度增大,且在同一时刻加速度越大油膜温度越高;油膜减小过程中的挤压膜作用导致轴承制动过程中的油膜厚度大于启动过程中的油膜厚度;由于在相同转速下轴承在启动时处于边界润滑状态,而在制动时处于弹流润滑状态,润滑状态的不同导致制动过程中的最高油膜温度较启动过程较小.  相似文献   

9.
弹性流体动力润滑状态通常出现在机械高副零部件的点/线接触部位,如齿轮、轴承和蜗轮蜗杆等.宏观上点/线接触在介观层面表现为两粗糙表面的接触,在微观层面上则又表现为微凸体间的接触.由于在中/重载荷作用下,粗糙表面上的微凸体发生接触后会产生弹塑性/塑性变形,从而使得两粗糙表面的弹流润滑接触转变为弹塑性流体动力润滑接触.此外,界面的接触刚度决定了机械装备的整机刚度.为了精确获得弹性流体动力润滑状态下界面法向接触刚度及其主要影响因素,基于界面的法向接触刚度由固体接触刚度和润滑油膜刚度两部分构成的思想,根据固体弹塑性理论和流体动力学理论,分别对界面间微凸体侧接触及部分膜流体动力润滑进行分析,从微观入手揭示双粗糙表面弹塑性流体动力润滑接触机理,进而建立考虑微凸体侧接触弹塑性变形的流体动力润滑界面法向接触刚度模型.通过仿真分析,揭示了法向载荷、卷吸速度、表面粗糙度及润滑介质特性等因素对润滑界面法向接触刚度的影响规律.研究表明:在相同速度、粗糙度及润滑油黏度的工况下,固体接触刚度和油膜接触刚度均随着法向接触载荷的增加呈非线性增大;在相同载荷、速度及润滑油黏度的工况下,接触表面粗糙度越大,表面形貌对于润滑...  相似文献   

10.
针对滚动体-滚道摩擦副,建立了点接触非稳态弹流润滑数学模型,利用FFT技术和半解析算法数值求解了接触体在自由振动过程中油膜压力和膜厚的变化,同时结合有阻尼系统的自由振动模型,给出了预测点接触摩擦副动力特性的方法,在较宽的载荷和速度范围内分析了接触副的等效刚度系数和阻尼系数的变化.结果表明:根据接触副的实际工作载荷和速度所确定的无量纲自然频率来进行非稳态弹流的计算所得到的膜厚结果更接近实验值;在接触体的振动过程中油膜的压力和厚度在平衡位置附近上下波动,且由于润滑油膜的作用接触体的振动幅值逐渐减小;刚度系数随载荷参数的增加而增加,随速度参数的增加而减小,而阻尼系数的变化规律较复杂,在不同的载荷和速度范围内呈现出不同的变化趋势.  相似文献   

11.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

12.
大部分工程实际粗糙表面符合非高斯分布,并对齿轮接触副润滑特性有重要影响.将渐开线齿轮啮合过程中齿面接触等效为三维无限长线接触,建立了一个可分析直齿轮和斜齿轮的混合弹流润滑计算模型;采用基于快速傅里叶变换的数值仿真方法生成给定参数的非高斯粗糙表面;运用该模型对直齿轮和斜齿轮啮合过程进行分析,求得不同表面粗糙度特征齿轮在各个啮合点的油膜厚度、接触区载荷以及接触区比例的情况.结果表明:对于标准差相等的非高斯粗糙表面,偏度值对齿轮润滑状况的影响与工况紧密相关,在润滑良好的条件下,偏度值越小润滑状况越优;润滑恶劣的条件下,偏度值越大润滑状况越优;而在各种工况下,峰度值对齿轮润滑状况的影响都表现出峰度值越大润滑状况越优的特点.  相似文献   

13.
本文中基于弹流润滑分析和次表面应力建立了渐开线直齿轮多轴疲劳寿命计算模型.相对于传统的单轴疲劳模型,考虑了齿轮固定点的应力历史和材料属性对疲劳寿命的影响,并可以得到齿轮在完整啮合过程中的寿命分布.首先建立齿轮的有限长弹流计算模型,得到齿轮啮合过程中的油膜压力和油膜厚度,再根据油膜压力计算出次表面的应力分布;通过分析齿轮计算区域随啮合过程移动的关系,得到固定点的应力历史,再根据基于应力历史的多轴疲劳寿命模型对齿轮的完整啮合过程进行寿命预估.计算分析了不同粗糙度幅值对轮齿各点寿命大小和分布的影响.研究表明:齿面粗糙度对疲劳寿命的影响显著,随着粗糙度幅值的增大,表层下最大应力向齿面移动,导致低疲劳寿命区向齿面发展且逐步扩展到整个单齿啮合区;而表面粗糙度降低到一定程度则对疲劳寿命的影响变得不明显.  相似文献   

14.
齿向修形对滤波减速器润滑性能的影响分析   总被引:3,自引:2,他引:1  
综合考虑了滤波减速器齿向修形参数、真实齿面粗糙度和瞬态效应等因素,建立了轮齿混合润滑数学模型,数值计算了不同修形参数值对应不同啮合点的最大压力和中心膜厚,分析了齿面粗糙度和转速对润滑性能的影响.结果表明:修形参数r和Ry均存在一个优化范围,使得轮齿表面最大油膜压力显著降低,边缘效应弱化,而中心膜厚则随着r和Ry的增大而逐渐增大;未修形轮齿边缘油膜压力受粗糙度的影响而急剧增大,边缘效应更加显著,修形后轮齿的边缘效应得到了明显改善,因此,轮齿修形也因粗糙表面的存在而显得更加重要;随着转速逐渐降低,轮齿表面的平均油膜厚度逐渐变小,接触比逐渐增大,轮齿表面由弹流润滑逐渐转为混合润滑,最后演变为边界润滑.  相似文献   

15.
啮入冲击对直齿轮弹流润滑的影响   总被引:1,自引:1,他引:0  
考虑齿轮啮入冲击载荷,曲率半径、卷吸速度沿啮合线随时间的变化以及温度场的影响,用非牛顿流体的Ree-Erying润滑模型,利用多重网格法模拟了轮齿从啮入到啮出整个时间历程中油膜压力、膜厚和温度分布的变化,对比分析了啮入冲击载荷与平稳载荷对渐开线直齿轮时变非牛顿热弹流润滑结果的影响.数值结果表明,啮入冲击载荷只对啮入初始阶段的油膜压力、膜厚、温度有很大影响,最小膜厚和最大压力都发生在冲击载荷的最大峰值载荷时刻,所以齿轮的啮入冲击对齿轮保持良好的润滑状态是不利的.  相似文献   

16.
齿轮的非稳态弹流润滑问题由于啮合过程中滑滚比、曲率半径、卷吸速度和载荷变化范围较大,因此数值计算稳定性很差。而考虑热效应的齿轮非稳态弹流润滑问题,数值计算就更困难。本文应用多重网格技术,求得了齿轮牛顿流体润滑情况下,非稳态热弹流润滑问题的完全数值解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号