首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the rate of convergence of solutions of Robin boundary value problems of an elliptic equation to the solution of a Dirichlet problem as a boundary parameter decreases to zero. The results are found using representations for solutions of the equations in terms of Steklov eigenfunctions. Particular interest is in the case where the Dirichlet data is only in L2(,). Various approximation bounds are obtained and the rate of convergence of the Robin approximations in the H1 and L2 norms are shown to have convergence rates that depend on the regularity of the Dirichlet data.  相似文献   

2.
Both exterior and interior mixed Dirichlet-Neumann problems in R3 for the scalar Helmholtz equation are solved via boundary integral equations. The integral equations are equivalent to the original problem in the sense that the traces of the weak seolution satisfy the integral equations, and, conversely, the solution of the integral equations inserted into Green's formula yields the solution of the mixed boundary value problem. The calculus of pseudodifferential operators is used to prove existence and regularity of the solution of the integral equations. The regularity results — obtained via Wiener-Hopf technique — show the explicit “edge” behavior of the solution near the submanifold which separates the Dirichlet boundary from the Neumann boundary.  相似文献   

3.
This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(?Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(?Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.  相似文献   

4.
This paper deals with a famous diffraction problem for a single half-plane Σ: x>0, y=0 as an obstacle and for some time-harmonic plane incident wave field. Rawlins in 1975 was the first to solve the mixed (Dirichlet/Neumann) boundary value problem for the scalar Helmholtz equation. He also was the first to solve the equivalent pair of coupled Wiener–Hopf equations explicitly by factoring their discontinuous 2×2 Fourier matrix symbol in 1980. Although for real wave numbers k the usual factorization procedure fails it will serve as the basis: Following the lines given by Ali Mehmeti in his habilitation thesis [1] for the (Dirichlet/Dirichlet) boundary value problem we combine the idea of integral path deforming along the branch cuts of the characteristic square root √(ξ2k2) given in Meister's book [13] with the modern Wiener–Hopf method solution derived by Speck [24] explicitly in a H1+ε, ε⩾0, Sobolev space setting. The symmetry of the intermediate spaces Hs, H-s, ∣s∣<1 2, which is due to generalized factorization, plays a key role in deforming the Fourier integral paths in order to get Laplace transform representations of the generalized eigenfunctions of the problem. As a remarkable fact 0<ε<¼ must hold here. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

5.
In this paper we describe some modified regularized boundary integral equations to solve the exterior boundary value problem for the Helmholtz equation with either Dirichlet or Neumann boundary conditions. We formulate combined boundary integral equations which are uniquely solvable for all wave numbers even for Lipschitz boundaries Γ=∂Ω. This approach extends and unifies existing regularized combined boundary integral formulations.  相似文献   

6.
This paper describes well‐posedness, spectral representations, and approximations of solutions of uniformly elliptic, second‐order, divergence form elliptic boundary value problems on exterior regions U in when N ≥ 3. Inhomogeneous Dirichlet, Neumann, and Robin boundary conditions are treated. These problems are first shown to be well‐posed in the space E1(U) of finite‐energy functions on U using variational methods. Spectral representations of these solutions involving Steklov eigenfunctions and solutions subject to zero Dirichlet boundary conditions are described. Some approximation results for the A‐harmonic components are obtained. Positivity and comparison results for these solutions are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The boundary equations of the logarithmic potential theory corresponding to the interior Dirichlet problem and the exterior Neumann problem for a plane domain with a cusp on the boundary are studied. Solvability theorems are proved for these integral equations in the spacesL p. Translated fromMatematicheskie Zametki, Vol. 59, No. 6, pp. 881–892, June, 1996.  相似文献   

8.
This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H 1(Ω) × L 2(?Ω) with boundary data from L 2(?Ω) (due to the failure of the uniform Lopatinskii condition). Additional challenges stem from the fact that the sources considered in this article are non-dissipative and are not locally Lipschitz from H 1(Ω) into L 2(Ω) or L 2(?Ω). With some restrictions on the parameters in the system and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution and establish (depending on the behavior of the dissipation in the system) exponential and algebraic uniform decay rates of energy. Moreover, we prove a blow-up result for weak solutions with nonnegative initial energy.  相似文献   

9.
We consider a Helmholtz equation in a number of Lipschitz domains in n ≥ 2 dimensions, on the boundaries of which Dirichlet, Neumann and transmission conditions are imposed. For this problem an equivalent system of boundary integral equations is derived which directly yields the Cauchy data of the solutions. The operator of this system is proved to be injective and strongly elliptic, hence it is also bijective and the original problem has a unique solution. For two examples (a mixed Dirichlet and transmission problem and the transmission problem for four quadrants in the plane) the boundary integral operators and the treatment of the compatibility conditions are described.  相似文献   

10.
This paper treats the well-posedness and representation of solutions of Poisson’s equation on exterior regions $U\subsetneq{\mathbb{R}}^{N}$ with N≥3. Solutions are sought in a space E 1(U) of finite energy functions that decay at infinity. This space contains H 1(U) and existence-uniqueness theorems are proved for the Dirichlet, Robin and Neumann problems using variational methods with natural conditions on the data. A decomposition result is used to reduce the problem to the evaluation of a standard potential and the solution of a harmonic boundary value problem. The exterior Steklov eigenproblems for the Laplacian on U are described. The exterior Steklov eigenfunctions are proved to generate an orthogonal basis for the subspace of harmonic functions and also of certain boundary trace spaces. Representations of solutions of the harmonic boundary value problem in terms of these bases are found, and estimates for the solutions are derived. When U is the region exterior to a 3-d ball, these Steklov representations reduce to the classical multi-pole expansions familiar in physics and engineering analysis.  相似文献   

11.
In a bounded Lipschitz domain in ?n, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces H p σ (Ω) for solutions, where p can differ from 2 and σ can differ from 1. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which p = 2 and {σ ? 1} < 1/2, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to p close to 2. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré-Steklov spectral problems.  相似文献   

12.
We establish uniform Lipschitz estimates for second‐order elliptic systems in divergence form with rapidly oscillating, almost‐periodic coefficients. We give interior estimates as well as estimates up to the boundary in bounded C1,α domains with either Dirichlet or Neumann data. The main results extend those in the periodic setting due to Avellaneda and Lin for interior and Dirichlet boundary estimates and later Kenig, Lin, and Shen for the Neumann boundary conditions. In contrast to these papers, our arguments are constructive (and thus the constants are in principle computable) and the results for the Neumann conditions are new even in the periodic setting, since we can treat nonsymmetric coefficients. We also obtain uniform W1,p estimates.© 2016 Wiley Periodicals, Inc.  相似文献   

13.
For partial differential equations of mixed elliptic‐hyperbolic type we prove results on existence and existence with uniqueness of weak solutions for closed boundary value problems of Dirichlet and mixed Dirichlet‐conormal types. Such problems are of interest for applications to transonic flow and are overdetermined for solutions with classical regularity. The method employed consists in variants of the a ? b ? c integral method of Friedrichs in Sobolev spaces with suitable weights. Particular attention is paid to the problem of attaining results with a minimum of restrictions on the boundary geometry and the form of the type change function. In addition, interior regularity results are also given in the important special case of the Tricomi equation. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
ABSTRACT. In this work we consider the increase in benefit for a control problem when the size of domain increases. Our control problem involves the study of the profitability of a biological growing species whose growth is confined to a bounded domain Ω? RN and is modeled by a logistic elliptic equation with different boundary conditions (Dirichlet or Neumann). The payoff-cost functional considered, J, is of quadratic type. We prove that, under Dirichlet boundary conditions, the optimal benefit (sup J) increases when the domain ? increases. This is not true under Neumann boundary conditions.  相似文献   

15.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

16.
Initial‐boundary value problems for integrable nonlinear partial differential equations have become tractable in recent years due to the development of so‐called unified transform techniques. The main obstruction to applying these methods in practice is that calculation of the spectral transforms of the initial and boundary data requires knowledge of too many boundary conditions, more than are required to make the problem well‐posed. The elimination of the unknown boundary values is frequently addressed in the spectral domain via the so‐called global relation, and types of boundary conditions for which the global relation can be solved are called linearizable. For the defocusing nonlinear Schrödinger equation, the global relation is only known to be explicitly solvable in rather restrictive situations, namely homogeneous boundary conditions of Dirichlet, Neumann, and Robin (mixed) type. General nonhomogeneous boundary conditions are not known to be linearizable. In this paper, we propose an explicit approximation for the nonlinear Dirichlet‐to‐Neumann map supplied by the defocusing nonlinear Schrödinger equation and use it to provide approximate solutions of general nonhomogeneous boundary value problems for this equation posed as an initial‐boundary value problem on the half‐line. Our method sidesteps entirely the solution of the global relation. The accuracy of our method is proven in the semiclassical limit, and we provide explicit asymptotics for the solution in the interior of the quarter‐plane space‐time domain.  相似文献   

17.
Let Ω be a bounded domain with smooth boundary in R2. We construct non-constant solutions to the complex-valued Ginzburg-Landau equation ε2Δu+(1−2|u|)u=0 in Ω, as ε→0, both under zero Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated zeros (vortices) with degrees ±1 to that of finding critical points of a small C1-perturbation of the associated renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for the Neumann problem, we find that if Ω is not simply connected, then for any k?1 a solution with exactly k vortices of degree one exists.  相似文献   

18.
A boundary integral method is developed for the mixed boundary value problem for the vector Helmholtz equation in R3. The obtained boundary integral equations for the unknown Cauchy data build a strong elliptic system of pseudodifferential equations which can therefore be used for numerical computations using Galerkin's procedure. We show existence, uniqueness and regularity of the solution of the integral equations. Especially we give the local "edge" behavior of the solution near the submanifold which divides the Dirichlet boundary from the Neumann boundary  相似文献   

19.
A boundary value problem for an elliptic system of equations is studied that arises in the analysis of a new hydrodynamic model describing charge transport in a planar semiconductor MESFET (metal semiconductor field effect transistor). The problem has a number of features, specifically, the equations of the system involve squared components of the gradients of the unknown functions; the boundary conditions are of a mixed character, i.e., Dirichlet and Neumann conditions are set on different portions of the boundary; and the boundary of the domain is a nonsmooth curve, namely, a rectangle. Under a certain optimal condition, the C 1,α-regularity of a weakened solution of the problem is justified and its existence is proved, while its uniqueness is shown under additional constraints. The results are used to justify the stabilization method as applied to finding approximate stationary solutions of the hydrodynamic model.  相似文献   

20.
In this paper, the fourth-order parabolic equations with different boundary value conditions are studied. Six kinds of boundary value conditions are proposed. Several numerical differential formulae for the fourth-order derivative are established by the quartic interpolation polynomials and their truncation errors are given with the aid of the Taylor expansion with the integral remainders. Effective difference schemes are presented for the third Dirichlet boundary value problem, the first Neumann boundary value problem and the third Neumann boundary value problem, respectively. Some new embedding inequalities on the discrete function spaces are presented and proved. With the method of energy analysis, the unique solvability, unconditional stability and unconditional convergence of the difference schemes are proved. The convergence orders of derived difference schemes are all O(τ2 + h2) in appropriate norms. Finally, some numerical examples are provided to confirm the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号