首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

2.
Poly vinylidene chloride (PVDC) irradiated with lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver ions (120 MeV) having fluence range of 1 × 1011 ions/cm2 to 3 × 1012 ions/cm2 have been studied using different techniques i.e. XRD (X-ray diffraction), FTIR (Fourier transform infrared), UV–Visible and TGA (thermo-gravimetric analysis). In XRD analysis, the intensity of diffraction peaks of PVDC irradiated with lithium ions was enhanced at lower fluence as compared to pristine. The shift in optical absorption edge in irradiated PVDC was correlated with the decrease in optical band gap energy. The distinguishable characteristic peaks were observed due to UV–Vis analysis, in lithium irradiated samples of PVDC at higher fluences. The % age decrease in optical band gap energy for the respective ions were 30.9%, 34.16%, 81.1%, 87.02% respectively. Formation of double carbon bonds and breaking of C–O and C–Cl bonds with the release of Cl in irradiated PVDC was observed in FTIR spectra. In Thermogravimetric analysis (TGA), the % age weight loss observed for irradiated samples with increase in ion fluence was lesser than the % age weight loss observed in pristine sample.  相似文献   

3.
Polypyrrole (PPy) nanofibers have been synthesized by interfacial polymerization method and irradiated with 160?MeV Ni12+ ions under vacuum with fluences in the range of 1010–1012?ions/cm2. High-resolution transmission electron microscopy results show that upon swift heavy ion (SHI) irradiation the PPy nanofibers become denser. The crystallinity of PPy nanofibers increases upon SHI irradiation, while their d-spacing decreases. Upon SHI irradiation, the polaron absorption band gets red-shifted indicating reduction in the optical band gap energy of the irradiated PPy nanofibers. The indirect optical band gap energy is decreased as compared to corresponding direct optical band gap energy. The number of carbon atoms per conjugation length (N) and carbon atoms per cluster (M) of the SHI-irradiated PPy nanofibers increase with increasing the irradiation fluence. Fourier transform infrared spectra reveal the enhancement in intensity of some characteristic vibration bands upon SHI irradiation. The thermal stability of the PPy nanofibers is enhanced on SHI irradiation. The charge carriers in both pristine and irradiated PPy nanofibers follow the correlated barrier hopping mechanism. Scaling of ac conductivity reveals that the conduction mechanism is independent of the SHI irradiation fluence.  相似文献   

4.
The synthesis of nanocrystalline ZnS thin films by pulsed laser deposition and their modification by swift heavy ions are presented. The irradiations with 150 MeV Ni ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2 have been used for these studies. Irradiation results in structural phase transformation and bandgap modification of these films are investigated by using X-ray diffraction and UV-visible absorption measurements, respectively. Since stoichiometry changes induced by irradiation can contribute to the modification of these properties, elastic recoil detection analysis has been performed on pristine and 150 MeV Ni ions irradiated ZnS thin films using a 120 MeV Ag ion beam. The stoichiometry of the films has been found to be similar for pristine and ion irradiated samples. A structural phase diagram based on thermal and pressure spikes has been constructed to explain the structural phase transformation.  相似文献   

5.
The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 °C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1×1011 ions/cm2 and 1×1012 ions/cm2 for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron–phonon coupling.  相似文献   

6.
利用X 射线衍射(XRD)和X射线吸收精细结构(XAFS)方法研究了磁控共溅射方法制备的MnxGe1-x薄膜样品的结构随掺杂磁性原子Mn含量的变化规律.XRD结果表明,在Mn的含量较低(7.0%)的Mn0.07Ge0.93样品中,只能观察到对应于多晶Ge的XRD衍射峰,而对Mn含量较高(25.0%, 36.0%)的Mn0.25Ge0.75和Mn关键词: 磁控溅射 XRD XAFS xGe1-x稀磁半导体薄膜')" href="#">MnxGe1-x稀磁半导体薄膜  相似文献   

7.
Narrow-gap higher mobility semiconducting alloys In1-xMnxSb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In0.98Mn0.02Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2 K) within a cluster.  相似文献   

8.
Present study reports effect of swift heavy ion irradiation on structural and magnetic properties of sputtered Fe/W multilayer structures (MLS) having bilayer compositions of [Fe(20 Å)/W(10 Å)]5BL and [Fe(20 Å)/W(30 Å)]5BL. These MLS are irradiated by 120 MeV Au9+ ions up to fluence of 4 × 1013 ions/cm2. X-ray reflectivity (XRR), wide-angle X-ray diffraction (WAXD), cross-sectional transmission electron microscopy (X-TEM) and magneto optical Kerr effect (MOKE) techniques are used for structural and magnetic characterization of pristine and irradiated MLS. Analysis of XRR data using Parratt's formalism shows a significant increase in W/Fe interface roughness. WAXD and X-TEM studies reveals that intra-layer microstructure of Fe-layers in MLS becomes nano-crystalline on irradiation. MOKE study shows increase in coercivity at higher fluence, which may be due to increase in surface and interface roughness after recrystallization of Fe-layers.  相似文献   

9.
ABSTRACT

The damage production induced by swift heavy ion irradiation in single-layer graphene (SLG) is investigated by molecular dynamics method. By given energy to a cylindrical region, the latent track consisting of nanopore and non-six-member rings can be produced, which depends on the electronic energy loss (dE/dx). For SLG, the minimum value needed to generate defects lies in 6.5–10?keV/nm. The latent track formation begins with the decomposition of the structure in energy deposition region until the atomic fragments escape from the surface and gradually decompose into atomic clusters. At the same time, the structure of system also changes. The source power of this phenomena is the accumulation and outward propagation of atomic stress in energy deposition region.  相似文献   

10.
Swift heavy ions (SHI) with electronic energy loss exceeding a value of 14.4 keVnm−1 create amorphized latent tracks in YBCO type superconductors. In the low fluence regime of an ion beam where tracks do not overlap, a decrease of the superconducting transition temperature as probed through resistivity studies, is not expected due to availability of percolating current paths. The present study however shows Tc decrease by about 1–3 K in thin films of YBCO when irradiated by 250 MeVAg ions at 79 K at a fluence of 5×1010–1×1012 ionscm−2. The highest fluence used in the present study is three times less than the fluence where track overlapping becomes significant. The Tc tends to increase towards the preirradiation value on annealing the films at room temperature. To explain this unusual result, we consider the effect of ion irradiation in inducing materials modification not only through creation of amorphized latent tracks along the ion path, but also through creation of atomic disorder in the oxygen sublattice in the Cu–O chains of YBCO by the secondary electrons. These electrons are emitted radially from the tracks during the passage of the SHI. Considering the correlation between the charge state of copper and its oxygen coordination, we show in particular that the latter process is a consequence of the inelastic interaction of the SHI induced low-energy secondary electrons with the YBCO lattice, which result in chain oxygen disorder and Tc decrease.  相似文献   

11.
Using vibrating sample magnetometery (VSM) 50 MeV Li3+ ion irradiation effects on magnetic properties of single crystals of SrGaxInyFe12−(x+y)O19 (where x=0, 5, 7, 9; y=0, 0.8, 1.3, 1.0), are reported. The substitution of Ga and In in strontium hexaferrite crystals decreases the value of magnetization sharply, which is attributed to shifting of collinear magnetic order to a non-collinear one. Reduction of magnetization is also explained to be as a result of the occupation of the crystallographic sites of Fe3+ by Ga3+ and In3+. The Li3+ ion irradiation decreases the value of magnetization, irrespective of whether the crystals are Ga–In substituted or unsubstituted crystals of SrFe12O19. The result is interpreted in terms of the occurrence of a paramagnetic doublet in crystals replacing magnetic sextuplet as a result of irradiation. Substitution of Ga–In in Strontium hexaferrite decreases the value of anisotropy constant. Irradiation with Li3+ ions increases the values of anisotropy field for both substituted as well as unsubstituted crystals. Substitution with Ga–In also decreases the Curie temperature (Tc) but the irradiation with Li3+ ions does not affect the curie temperature of either Ga–In substituted or pure SrFe12O19 crystals.  相似文献   

12.
NiO nanoparticle thin films grown on Si substrates were irradiated by 107 MeV Ag8+ ions. The films were characterized by glancing angle X-ray diffraction and atomic force microscopy. Ag ion irradiation was found to influence the shape and size of the nanoparticles. The pristine NiO film consisted of uniform size (∼100 nm along major axis and ∼55 nm along minor axis) elliptical particles, which changed to also of uniform size (∼63 nm) circular shape particles on irradiation at a fluence of 3 × 1013 ions cm−2. Comparison of XRD line width analysis and AFM data revealed that the particles in the pristine films are single crystalline, which turn to polycrystalline on irradiation with 107 MeV Ag ions.  相似文献   

13.
The calibrated and controlled swift heavy ions (SHI) beam irradiation generate defects which can cause modifications in various properties of the materials such as structural, optical, magnetic, morphological, and chemical etc. The passage of ion through the target material causes the nuclear energy losses (Sn) and electronic energy losses (Se). The Se dominates over Sn in SHI irradiation. In the present study, ZrO2 thin films were grown on silicon and glass substrate by using RF sputtering deposition technique. For the purpose of modifications induced by swift heavy ions, these films were irradiated by a 120 MeV S9+ ion beam of 1 pnA current, with varying ion fluences from 5E12 to 1E13 ions/cm2, using the tandem accelerator at the Inter University Accelerator Center (IUAC), New Delhi, India. The X-ray diffraction (XRD) patterns confirmed the formation of monoclinic and tetragonal phases and it was observed that XRD peaks intensity increased up to the fluence of 5E12 ions/cm2 followed by opposite behavior at higher fluences. Atomic force microscope (AFM) study revealed the increased surface roughness after SHI irradiation. In addition to it, the formation of electronic transition states in optical band gap region and enhancement of absorption edge was observed from UV-visible spectroscopy (UV-Vis) results due to which direct band gap energy value decreased from those of un-irradiated samples. Photoluminescence (PL) broad emission spectra were determined using the excitation wavelength at 290 nm with the prominent peak at 415 nm which can be ascribed to Zr vacancies due to band edge emission as a result of free-exciton recombination. Rutherford backscattering spectrometry (RBS) technique was used for depth profiling and elemental composition in zirconia thin films. The expected role of electronic energy loss during ion irradiation is to modify the properties of the material has been discussed.  相似文献   

14.
In the present work zinc ferrite nanoparticles of different crystallite size were irradiated with 200 MeV Ag15+ ion beam. The structural and magnetic characterization performed for these samples indicate the presence of size dependent irradiation induced changes in the nanoparticles. The superparamgnetic nanoparticles do not alter their behavior after irradiation; however paramagnetic samples exhibit weak ferrimagnetism in the irradiated specimen. Results obtained from these measurements are in agreement with results obtained from the electron paramagnetic resonance spectroscopy.  相似文献   

15.
Interfacial structures of CoFe/p-Si have been studied before and after the swift heavy ion (~100?MeV, Ni7+) irradiation to investigate its electronic and magnetic behavior. X-ray diffraction (XRD), atomic force microscopy, magnetic force microscopy and magnetization characteristics (MH) from vibrating sample magnetometer (VSM) techniques have been used for the above. XRD data have confirmed the formation of the CoFe alloy phase along with the silicide phases of Fe and Co. It is observed that there is an irradiation-induced growth in crystallite but surface remains smooth with a surface roughness of ~34?nm. A very significant increase has been observed in the magnetization and that too with irradiation dose as compared with unirradiated ones, maintaining their superparamagnetic behavior. The results could be understood due to the role played by various magnetic phases in the structure. The magnetic field sensitivity on electronic transport across the structures has also increased in a significant manner after the irradiation as compared with unirradiated ones. The magnetic field sensitivity has resulted in an MR of 20%. The results could be understood due to the irradiation induced interfacial intermixing to result in increased magnetic phases of silicide for the observed significant magnetic behavior on the irradiation.  相似文献   

16.
Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16O6+), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 × 1013 ions cm−2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 × 1013 ions cm−2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 × 1013 ions cm−2. A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics.  相似文献   

17.
Using hybrid exchange density functional calculations we show that the type of background carriers has profound effects on magnetic interactions in Mn doped dilute magnetic Si. The p- and n-type Si were simulated by introducing an extra hole and an extra electron, respectively in the 64 atoms Si supercell. In case of p-type Si compensated by a homogeneous background potential and 1.6% Mn, the ground state is ferromagnetic, whereas other conditions remaining the same, the ground state becomes antiferromagnetic for the n-type Si. The exchange energies in Mn-doped extrinsic Si are higher by about 1 eV/Mn atom compared to the Mn doped intrinsic Si. Calculated electronic structures reveal that in p-type Si:Mn the hole localises over Mn and the short range magnetic coupling increases. Our calculations indicate that localisation of magnetic polarons at the Mn site is likely, which in turn enhances long range magnetic interaction between Mn ions and responsible for FM stabilisation. On the other hand, in the n-type host electron–electron repulsion increases within Mn–Si impurity band and the short range coupling decreases, which destroys the long range spin polarisation. These calculations explain the observed ferromagnetism in the p-type Si:Mn at higher temperatures than in the n-type Si:Mn and the magnetic moments of the systems compare well with experiments.  相似文献   

18.
The present study reports the effect of swift heavy ion irradiation on structural and magnetic properties of sputtered W/Fe multilayer structure (MLS) having bilayer compositions of [W(10 Å)/Fe(20 Å)]10BL. The MLS is irradiated by 120 MeV Au9+ ions of fluences 1×1013 and 4×1013 ions/cm2. Techniques like X-ray reflectivity (XRR), cross-sectional transmission electron microscopy (X-TEM) and DC magnetization with a vibrating sample magnetometer (VSM) are used for structural and magnetic characterization of pristine and irradiated MLS. Analysis of XRR data using Parratt’s formalism shows a significant increase in W/Fe layer roughness. X-TEM studies reveal that intra-layer microstructure of Fe layers in MLS becomes nano-crystalline on irradiation. DC magnetization study shows that with spacer layer thickness interlayer coupling changes between ferromagnetic to antiferromagnetic.  相似文献   

19.
祝梦遥  鲁军  马佳淋  李利霞  王海龙  潘东  赵建华 《物理学报》2015,64(7):77501-077501
理论预言窄禁带稀磁半导体(Ga,Mn)Sb及其异质结构可能存在量子反常霍尔效应等新奇特性, 近年来受到了特别关注. 但是, 由于(Ga,Mn)Sb薄膜生长窗口窄, 纯相(Ga,Mn)Sb薄膜制备比较困难, 迄今关于这类材料的研究报道为数不多. 本文采用低温分子束外延的方法, 通过优化生长条件, 成功制备出厚度为10 nm, Mn含量在0.016至0.039之间的多组(Ga,Mn)Sb薄膜样品. 生长过程中反射式高能电子衍射原位监测和磁性测量都表明没有MnSb等杂相的偏析, 同时原子力显微镜图像表明其表面形貌平滑, 粗糙度小. 通过生长后退火处理, (Ga,Mn)Sb薄膜的最高居里温度达到30 K. 此外, 本文研究了霍尔电阻和薄膜电阻随磁场的变化关系, 在低温下观测到明显的反常霍尔效应.  相似文献   

20.
The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in Ic was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号