首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
段小玲  张进成  肖明  赵一  宁静  郝跃 《中国物理 B》2016,25(8):87304-087304
A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor(GTCE-HEMT)with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 m S/mm, and subthreshold slope of 85 m V/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage(VB) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode(D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits.  相似文献   

2.
在蓝宝石衬底上生长了以AlN/GaN超晶格准AlGaN合金作为势垒的HEMT结构材料,并与传统AlGaN合金势垒样品进行了对比.在高Al组分(≥40%)情况下,超晶格势垒样品的表面形貌明显改进,电学性能特别是2DEG面电子浓度也有所改进.对超晶格势垒生长参数进行了初步优化,使得HEMT结构薄层电阻进一步降低,最后获得了251 Ω/□的薄层电阻. 关键词: AlGaN/GaN 结构 AlN/GaN超晶格 二维电子气 高电子迁移率晶体管  相似文献   

3.
We demonstrated an AlGaN/GaN high electron mobility transistor(HEMT)namely double-Vthcoupling HEMT(DVC-HEMT)fabricated by connecting different threshold voltage(Vth)values including the slant recess element and planar element in parallel along the gate width with N;O plasma treatment on the gate region.The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm.Furthermore,the proposed architecture also features an exceptional linearity performance with 1-d B compression point(P1 d B)of 28 d Bm,whereas that of the Fin-like HEMT is 25.2 d Bm.The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.  相似文献   

4.
In order to improve the breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs), we report a feasible method of low density drain (LDD) HEMT. The fluoride-based plasma treatment using CF4 gas is performed on the drain-side of the gate edge. The channel two-dimensional electron gas (2DEG) concentrations are modulated by fluoride plasma treatment, and the peak electric field at the gate edge is effectively reduced, so the breakdown voltage is improved. The electric field distributions of the LDD-HEMTs are simulated using the Silvaco software, and the peak of the electric field on the gate edge is effectively reduced. Experimental results show that, compared with the conventional HEMT, LDD-HEMTs have a lower reverse leakage current of the gate, and the breakdown voltage is increased by 36%. The current collapse characteristics of the LDD-HEMTs are confirmed by dual-pulse measurement, and an obvious pulse current reduction is due to the surface states by implanting F ions between the gate and the drain.  相似文献   

5.
AlGaN/GaN high electron mobility transistor (HEMT) based hydrogen sensors incorporating platinum nanonetworks in the gate region were demonstrated. Pt nanonetworks with 2–3 nm diameter were synthesized by a simple and low-cost solution phase method, and applied to the gate electrode of transistor sensor. The HEMT with physically and electrically connected Pt nanonetwork gate showed good pinch-off and modulation of drain current characteristics. Compared to conventional Pt thin film AlGaN/GaN HEMT sensor, the Pt nanonetwork sensor has dramatically improved current response to hydrogen. Relative current change of Pt nanonetwork gated sensor in 500 ppm H2 balanced with Air ambient was 3.3 × 106% at VGS of ?3.3 V, while 2.5 × 102% at VGS of ?2.9 V for Pt film. This results from large increase in channel conductance induced by huge catalytic surface area of nanostructured Pt networks.  相似文献   

6.
王冲  全思  张金凤  郝跃  冯倩  陈军峰 《物理学报》2009,58(3):1966-1970
分析了栅槽深度对AlGaN/GaN HEMT特性的影响,并对不同栅槽深度的器件特性进行了模拟,得到了器件饱和电流、最大跨导和阈值电压随栅槽深度的变化规律.当槽栅深度增大,器件饱和电流逐渐下降,而最大跨导逐渐增大,阈值电压向X轴正方向移动.研制出不同栅槽深度的蓝宝石衬底AlGaN/GaN HEMT,用实验数据验证了得到的不同栅槽深度器件特性变化规律.从刻蚀损伤和刻蚀引入界面态的角度分析了模拟与实验规律产生差别的原因. 关键词: 高电子迁移率晶体管 AlGaN/GaN 槽栅器件  相似文献   

7.
介绍了一种具有高阈值电压和大栅压摆幅的常关型槽栅AlGaN/GaN金属氧化物半导体高电子迁移率晶体管。采用原子层淀积(ALD)方法实现Al2O3栅介质的沉积。槽栅常关型AlGaN/GaN MOS-HEMT的栅长(Lg)为2 μm,栅宽(Wg)为0.9 mm(0.45 mm×2),栅极和源极(Lgs)之间的距离为5 μm,栅极和漏极(Lgd)之间的距离为10 μm。在栅压为-20 V时,槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电仅为0.65 nA。在栅压为+12 V时,槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电为225 nA。器件的栅压摆幅为-20~+12 V。在栅压Vgs=+10 V时,槽栅常关型AlGaN/GaN MOS-HEMT电流和饱和电流密度分别达到了98 mA和108 mA/mm (Wg=0.9 mm), 特征导通电阻为4 mΩ·cm2。槽栅常关型AlGaN/GaN MOS-HEMT的阈值电压为+4.6 V,开启与关断电流比达到了5×108。当Vds=7 V时,器件的峰值跨导为42 mS/mm (Wg=0.9 mm,Vgs=+10 V)。在Vgs=0 V时,栅漏间距为10 μm的槽栅常关型AlGaN/GaN MOS-HEMT的关断击穿电压为450 V,关断泄露电流为0.025 mA/mm。  相似文献   

8.
In this paper, a new current expression based on both the direct currect(DC) characteristics of the AlGaN/GaN high election mobility transistor(HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the AlGaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of I–V, S-parameter, and radio frequency(RF) large-signal characteristics are compared for a self-developed on-wafer AlGaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-μm wide(Such an AlGaN/GaN HEMT is denoted as AlGaN/GaN HEMT(10 × 125 μm)). The improved large signal model simulates the I–V characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

9.
AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current IDsat, maximal transconductance gm, and the positive shift of threshold voltage VTH at high drain-source voltage VDS. The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with VDS=20 V and VGS=0 V applied to the device for 104 sec, the SiN passivation decreases the stress-induced degradation of IDsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of IDsat, which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted.  相似文献   

10.
A new A1GaN/A1N/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded A1GaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high A1 composition A1GaN barrier. The high 2DEG mobility of 1806 cm2/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5μm×5 μm are attributed to the improvement of interracial and crystal quality by employing the stepgraded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5Ω/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/ram and a maximum drain current density of 800 mA/mm.  相似文献   

11.
AZO-gated and Ni/Au-gated AlGaN/GaN HEMTs are fabricated successfully,and an excellent transparency of AZOgated electrode is achieved.After a negative gate bias stress acts on two kinds of the devices,their photoresponse characteristics are investigated by using laser sources with different wavelengths.The effect of photoresponse on AZO-gated electrode device is more obvious than on Ni/Au-gated electrodes device.The electrons are trapped in the AlGaN barrier of AZO-gated HEMT after it has experienced negative gate bias stress,and then the electrons can be excited effectively after it has been illuminated by the light with certain wavelengths.Furthermore,the trap state density D_T and the time constantτ_T of the AZO-gated Schottky contact are extracted by fitting the measured parallel conductance in a frequency range from10 kHz to 10 MHz.The constants of the trap range from about 0.35 μs to 20.35 μs,and the trap state density increased from1.93×l0~(13)eV 1·cm~2 at an energy of 0.33 eV to 3.07×10~(11) eV~1·cm~2 at an energy of 0.40 eV.Moreover,the capacitance and conductance measurements are used to characterize the trapping effects under different illumination conditions in AZO-gated HEMTs.Reduced deep trap states' density is confirmed under the illumination of short wavelength light.  相似文献   

12.
An enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm AlGaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around --1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (--3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-μ m gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/mm, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress.  相似文献   

13.
A new AlGaN/GaN high electron mobility transistor (HEMT) employing Ni/Au Schottky gate oxidation and benzocyclobutene (BCB) passivation is fabricated in order to increase a breakdown voltage and forward drain current. The Ni/Au Schottky gate metal with a thickness of 50/300 nm is oxidized under oxygen ambient at 500 C and the highly resistive NiO is formed at the gate edge. The leakage current of AlGaN/GaN HEMTs is decreased from 4.94 μA to 3.34 nA due to the formation of NiO. The BCB, which has a low dielectric constant, successfully passivates AlGaN/GaN HEMTs by suppressing electron injection into surface states. The BCB passivation layer has a low capacitance, so BCB passivation increases the switching speed of AlGaN/GaN HEMTs compared with silicon nitride passivation, which has a high dielectric constant. The forward drain current of a BCB-passivated device is 199 mA /mm, while that of an unpassivated device is 172 mA /mm due to the increase in two-dimensional electron gas (2DEG) charge.  相似文献   

14.
Zhihong Chen 《中国物理 B》2022,31(11):117105-117105
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.  相似文献   

15.

We performed physics-based 2-dimensional TCAD device simulations to optimize field-plated AlGaN/GaN heterostructure field effect transistors (HFETs) for high-power and high-frequency operation. The effects of the field plate dimensions and the passivation dielectric materials were investigated. The results showed that dimensional changes in the field plates significantly affected the breakdown and frequency performance. Silicon nitride, a widely-used passivation material for this technology, also turned out to have a benign effect on high-voltage operation whereas it had a detrimental effect on high-frequency operation. In this work, double-layered passivation with a source field plate was proposed and optimized to secure both high-voltage and high-frequency operation. The optimized devices maintained high breakdown voltage performance without compromising frequency response and without increasing fabrication complexity.

  相似文献   

16.
谢刚  汤岑  汪涛  郭清  张波  盛况  Wai Tung Ng 《中国物理 B》2013,22(2):26103-026103
An AlGaN/GaN high-electron mobility transistor (HEMT) with a novel source-connected air-bridge field plate (AFP) is experimentally verified. The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain. When compared to a similar size HEMT device with conventional field plate (CFP) structure, the AFP not only minimizes the parasitic gate to source capacitance, but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current. In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm, three times higher forward blocking voltage of 375 V was obtained at VGS=-5 V. In contrast, a similar sized HEMT with CFP can only achieve a breakdown voltage no higher than 125 V using this process, regardless of device dimensions. Moreover, a temperature coefficient of 0 V/K for the breakdown voltage is observed. However, devices without field plate (no FP) and with optimized conventional field plate (CFP) exhibit breakdown voltage temperature coefficients of -0.113 V/K and -0.065 V/K, respectively.  相似文献   

17.
A reduced surface electric field in AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer. The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions. Compared with the HEMTs with conventional source-connected field plate and double field plate, the HEMT with Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge. By optimizing both the length of Mg-doped layer, Lm, and the doping concentration, a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure, respectively. In a device with VGS=-5 V, Lm=1.5 μm, a peak Mg doping concentration of 8× 1017 cm-3 and a drift region length of 10 μm, the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.  相似文献   

18.
In this paper, we have studied the Schottky contact of two structures AlInN/GaN and AlGaN/GaN in transistors HEMTs. The current–voltage Igs(Vgs) of AlInN/GaN and AlGaN/GaN structures were investigated at room temperature. The electrical parameters such as ideality factor (2.3 and 1.96), barrier height (0.72 and 0.71 eV) and series resistance (33 and 153 $\Omega $ ) were evaluated from I–V data. The comparison of the performance of the two structures AlInN/GaN and AlGaN/GaN in transistors HEMTs have been analyzed and discussed.  相似文献   

19.
In this paper, a high performance AlGaN/GaN High Electron Mobility Transistor (HEMT) on SiC substrates is presented to improve the electrical operation with the amended depletion region using a multiple recessed gate (MRG–HEMT). The basic idea is to change the gate depletion region and a better distribution of the electric field in the channel and improve the device breakdown voltage. The proposed gate consists of lower and upper gate to control the channel thickness. Also, the charge of the depletion region will change due to the optimized gate. In addition, a metal between the gate and drain including the horizontal and vertical parts is used to better control the thickness of the channel. The breakdown voltage, maximum output power density, cut-off frequency, maximum oscillation frequency, minimum noise figure, maximum available gain (MAG), and maximum stable gain (MSG) are some parameters for designers which are considered and are improved in this paper.  相似文献   

20.
An AlGaN/GaN high-electron mobility transistor(HEMT) with a novel source-connected air-bridge field plate(AFP) is experimentally verified.The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain.When compared to a similar size HEMT device with a conventional field plate(CFP) structure,the AFP not only minimizes the parasitic gate to source capacitance,but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current.In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm,three times higher forward blocking voltage of 375 V was obtained at VGS =-5 V.In contrast,a similar sized HEMT with a CFP can only achieve a breakdown voltage no higher than 125 V using this process,regardless of device dimensions.Moreover,a temperature coefficient of 0 V/K for the breakdown voltage is observed.However,devices without a field plate(no FP) and with an optimized conventional field plate(CFP) exhibit breakdown voltage temperature coefficients of-0.113 V/K and-0.065 V/K,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号