首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周梅  赵德刚 《物理学报》2016,65(7):77802-077802
采用LASTIP软件研究了InGaN/GaN(In组分为15%)量子阱垒层和阱层厚度对GaN基蓝紫光激光器性能的影响及机理. 模拟计算结果表明, 当阱层太薄或太厚时, GaN基激光器的阈值电流增加、输出功率下降, 最优的阱层厚度为4.0 nm左右; 当阱层厚度太薄时, 载流子很容易泄漏, 而当阱层厚度太厚时, 极化效应导致发光效率降低, 研究还发现, 与垒层厚度为7 nm 相比, 垒层厚度为15 nm时激光器的阈值电流更低、输出功率更高, 因此适当地增加垒层厚度能显著抑制载流子泄漏, 从而改善激光器性能.  相似文献   

2.
Two ultraviolet InGaN/GaN light emitting diodes (LEDs) with and without InGaN underlying layer beneath the multiple quantum wells (MQWs) were grown by metal-organic vapor phase epitaxy. Based on the photoluminescence excitation measurements, it was found that the Stokes shift of the sample with a 10-nm-thick In0.1Ga0.9N underlying layer was about 64 meV, which was smaller than that of the reference sample without InGaN underlying layer, indicating a reduced quantum-confined Stark effect (QCSE) due to the decrease of the piezoelectric polarization field in the MQWs. In addition, by fitting the photon energy dependence of carrier lifetime values, the radiative recombination lifetime of the sample with and without InGaN underlying layer were obtained about 1.22 and 1.58 ns at 10?K, respectively. The shorter carrier lifetime also confirmed that the QCSE in the MQWs was weakened after inserting the InGaN underlying layer. In addition, although the depth of carrier localization in the sample with InGaN underlying layer became smaller, the nonradiative recombination centers (NRCs) inside it decreased, and thus suppressed the nonradiative recombination process significantly according to the electroluminescence measurement results. Compared to the reference sample, the efficiency droop behavior was delayed in the sample with InGaN underlying layer and the droop effect was also effectively alleviated. Therefore, the enhanced light-emission efficiency of ultraviolet InGaN/GaN MQW LEDs could be attributed to the decrease of QCSE and NRCs.  相似文献   

3.
InGaN/GaN single quantum well (SQW) structures under various InGaN growth temperatures have been grown by metal organic chemical vapor deposition (MOCVD), the surface morphologies and optical properties are investigated. The radius of the typical V-pits on the SQW surface is affected by the InGaN well-temperature, and the surface roughness decreased as the well-temperature reduced. Room-temperature photoluminescence (PL) and cathode luminescence (CL) shows the quantum well and quantum dot (QD)-like localized state light emission of the SQWs grown at 700 and 690 °C, respectively, whereas the samples grown at 670 and 650 °C present hybrid emission peaks. Excitation power dependent PL spectra indicates the QD-like localized state emission dominates at low excitation power and the quantum well emission starts to take over at high excitation power.  相似文献   

4.
Uniform InGaN nanodots were successfully grown on SiO2 pretreated GaN surface. It was found that the InGaN nanodots were 20?nm in diameter and 5?nm in height, approximately. After the growth of two periods of InGaN/GaN quantum wells on the surface of InGaN nanodots, nanodot structure still formed in the InGaN well layer caused by the enhanced phase separation phenomenon. Dual-color emissions with different behavior were observed from photoluminescence (PL) spectrum of InGaN nanodots hybrid with InGaN/GaN quantum wells. A significant blueshift and a linewidth broadening were measured for the low-energy peak as the increase of PL excitation power, while a slight blueshift and a linewidth narrowing occurred for the high-energy peak. Accordingly, these two peaks were assigned to be from the In-rich nanodots and quantized state transition from the InGaN/GaN quantum wells with indium content, respectively.  相似文献   

5.
An analytical, visual and open source model based on solving the rate equations for InGaN/GaN single quantum well (QW) lasers has been carried out. In the numerical computations, the fourth-order Runge–Kutta method has been used for solving the differential rate equations. The rate equations which have been considered in this simulation include the two level rate equations for the well and separate confinement heterostructure (SCH) layers. We present a new and inexpensive modeling method with analytical, visual and open source capabilities to investigate and comprehend the QW laser characteristics such as time behavior of carriers in SCHs and QW, photon density, output power and gain, and also the output power versus current which presents the threshold current of the laser. The characteristics of the QW lasers, which include laser time response (Pt), turn-on delay time of lasing and output power–current (PI) characteristic and related features such as threshold current and slope efficiency have been investigated. Our model accurately computes the Pt and PI characteristics such as turn-on delay time, threshold current and slope efficiency, and also illustrates the effects of parameters such as the injection current and geometry.  相似文献   

6.
Feng  S.-W.  Tsai  C.-Y.  Cheng  Y.-C.  Liao  C.-C.  Yang  C.C.  Lin  Y.-S.  Ma  K.-J.  Chyi  J.-I. 《Optical and Quantum Electronics》2002,34(12):1213-1219
A side-bump feature in a photoluminescence (PL) spectrum of an InGaN compound was widely observed. With reasonable fitting to PL spectra with three Gaussian distributions, the temperature variations of the peak positions, integrated PL intensities, and peak widths of the main and first side peaks of three InGaN/GaN multiple quantum well samples with different nominal indium contents are shown and interpreted. The existence of the side peaks is attributed to phonon–replica transitions. The variations of the peak position separations and the decreasing trends of the first side peak widths beyond certain temperatures in those samples were explained with the requirement of phonon momentum condition for phonon–replica transitions. In the sample with 25% nominal indium content, the phonon–replica transition could become stronger than the direct transition of localized states.  相似文献   

7.
The influences of InGaN/GaN multiple quantum well (MQW) heterostructures with InGaN/GaN and GaN barriers on carrier confinement were investigated. The degree of disordering over a broad range of temperatures from 20 to 300 K was considered. The optical and electrical properties were strongly influenced by structural and compositional disordering of the InGaN/GaN MQW heterostructures. To compare the degree of disordering we examined the temperature dependence of the luminescence spectra and electrical conductance contingent on the Berthelot-type mechanisms in the InGaN/GaN MQW heterostructures. We further considered carrier transport in the InGaN/GaN disordered systems, probability of carrier tunneling, and activation energy of the transport mechanism for devices with InGaN/GaN and GaN barriers. The optical properties of InGaN/GaN disordered heterosystems can be interpreted from the features of the absorption spectra. The anomalous temperature-dependent characteristics of the disordered InGaN/GaN MQW structures were attributable to the enhancement of the exciton confinement.  相似文献   

8.
Photoluminescence (PL) spectroscopy with subwavelength lateral resolution has been employed to probe individual localization centers in a thin InGaN/GaN quantum well. Spectrally narrow emission lines with a linewidth as small as 0.8 meV can be resolved, originating from the recombination of an electron-hole pair occupying a single localized state. Surprisingly, the individual emission lines show a pronounced blueshift when raising the temperature, while virtually no energy shift occurs for increasing excitation density. These findings are in remarkable contrast to the behavior usually found in macro-PL measurements and give a fundamental new insight into the recombination process in semiconductor nanostructures in the presence of localization and strong internal electric fields. We find clear indications for a biexciton state with a negative binding energy of about -5+/-0.7 meV.  相似文献   

9.
10.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

11.
The differential cross-section for an intersubband electron Raman scattering process in a strained InGaN/GaN quantum well in the presence of an intense laser field is studied. In the effective-mass approximation, the electronic structure is calculated by taking into account the effects of spontaneous and piezoelectric polarization fields on the confinement potential. Effects of laser field strength, indium composition and the well width on the differential cross-section of the strained quantum well are investigated. Results show that the position and the magnitude of the peaks of emission spectra considerably depend on the laser field strength as well as structural parameters.  相似文献   

12.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

13.
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长了InGaN/GaN量子阱结构. 研究了引入n型InGaN薄层或InGaN/GaN超晶格层的量子阱特性,结果表明通过引入n型InGaN薄层或InGaN/GaN超晶格层缓解了量子阱有源区中的应力,改善了多量子阱表面形貌,减少了V型缺陷密度,而且提高了多量子阱的光致发光强度,从而也改进了LED的发光效率. 关键词: InGaN/GaN多量子阱 原子力显微镜 X射线双晶衍射 光致发光  相似文献   

14.
Electroluminescence (EL) properties of InxGa1−xN/AlyGa1−yN/GaN/SiC diode were studied. The spectral range for which EL spectra were recorded is 1–3.5 eV. Room temperature EL was obtained for forward bias (3.18 V, 220 μA) at 446.067 nm (blue luminescence band), 606.98 nm (yellow luminescence band) and 893.84 nm (Infrared luminescence band). The EL temperature dependence shows that, BL band is mostly given by e–h recombination corresponding to indium composition equal to 0.17 ± 0.01 and 0.14 ± 0.02 obtained theoretically and experimentally, respectively. The yellow band is generally weak and absent at low temperature. The IRL band is more consistent with the DAP recombination and could be explained by the thermal activation of Mg states. The luminescence bands shift to lower energies is due probably to the larger potential fluctuations effect.  相似文献   

15.
Photoluminescence (PL) spectra and time-resolved PL are measured from around 10 to 300 K for the InGaN/GaN single quantum wells (SQWs) with well widths of 1.5, 2.5, 4 and 5 nm. For the SQWs with the well widths of 1.5 and 2.5 nm, the peak position of PL exhibits an S-shaped shift with increasing temperature. The radiative recombination time τRAD begins to increase at the temperature for the position to change from the red-shift to the blue-shift. The steep increase of τRAD is observed beyond the temperature from the blue-shift to the red-shift. For the SQWs with the well widths of 4 and 5 nm, the peak position of PL exhibits a monotonic red-shift. τRAD decreases at first and then increases with temperature. It is about 100-times longer in the low temperature region and about 10-times longer at room temperature as compared with those of the SQWs with narrower widths.  相似文献   

16.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

17.
The optical properties and recombination kinetics of the InGaN/GaN double quantum well (DQW) structures with different well thickness (Lw) have been studied by means of photoluminescence (PL), time-resolved PL, and cathodoluminescence (CL) measurements. With increasing quantum well thickness up to 4 nm, the PL emission energy decreases and the blueshift of the PL emission energy increases with increasing excitation density. On the other hand, the PL emission energy of the DQWs with Lw=16 nm is higher than that of the DQWs with Lw=4 nm, and is independent of the excitation density. With increasing Lw from 1 to 4 nm, the PL decay times increase. In contrast, the decay times of 16 nm DQWs are faster than those of 4 nm DQWs. These different results for 16 nm DQWs such as the blueshift of the emission energy, the decrease of the excitation density dependence, and the increase of recombination rate can be ascribed to the relaxation of the piezoelectric field. We also observed the inhomegeneity in the CL spectra of the DQWs with Lw=1 nm on 1 μm scale.  相似文献   

18.
We investigated the carrier transition properties of the GaN/InGaN/GaN single quantum well bounded by AlGaN barriers. In order to confirm the carrier transition coming from the single quantum well, the single quantum well layer was etched by reactive ion etching method. The structural property of the samples was characterized by high resolution X-ray diffraction measurements. In micro-photoluminescence measurements, it is clearly shown that the donor bound exciton transition of the single quantum well sample was redshifted compared to the etched one due to strain. Moreover, a lot of peaks were observed below the GaN band gap energy due to carrier localization in the InGaN/GaN single quantum well, including carrier localization center and quantum confined states. The excitation power dependence and time resolved photoluminescence spectra were investigated to characterize the optical transition of the single quantum well.  相似文献   

19.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) are simulated by the APSYS software with a non-local quantum well transport model which is used to describe the phenomenon that carriers can fly over the quantum wells directly. The simulation results based on this model are in good agreement with the experiment and show its significant influence on the output power, carrier transport, peak wavelength and current crowding effect of the InGaN/GaN MQW LEDs, indicating that the non-local quantum well transport plays an important role in these devices.  相似文献   

20.
李为军  张波  徐文兰  陆卫 《物理学报》2009,58(5):3421-3426
分别采用量子阱模型和量子点模型对蓝色InGaN/GaN多量子阱发光二极管电学和光学特性进行模拟,并和实验测量结果进行了比对,结果发现,量子点模型的引入,很好地解决了I-V和电致发光二方面的实验与理论模型间符合程度不好的问题.同时,在I-V曲线特性模拟中发现,在量子点理论模型的基础上,只有考虑到载流子的非平衡量子传输效应,才能得到和实验相接近的I-V曲线,揭示着在InGaN/GaN 多量子阱发光二极管电输运特性中,载流子的非 关键词: InGaN/GaN 发光二极管 数值模拟 量子点模型  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号