共查询到17条相似文献,搜索用时 46 毫秒
1.
针对现有的情感计算算法中存在着情感跟踪延迟的问题,且没有考虑到情感状态的连续性的情况,提出了一种结合数据场情感空间和混合蛙跳算法的连续语音情感变化趋势检测技术。首先构建数据场情感空间,利用情感特征量模拟数据场粒子,用势能函数描述粒子之间的相互作用。然后运用混合蛙跳算法技术,用青蛙个体来模拟情感状态变化过程中的情感特征量,得到情感变化的趋势。通过对变化趋势的分析,可以达到情感预测的目的。经实验证明,该算法性能比现有算法有较大改进。 相似文献
2.
有效特征的选取一直都是语音情感识别算法的关键。为此,针对语音情感特征选择与构建的问题,一种仿选择性注意机制的语音情感识别算法被提出。考虑到语音信号的时频特性,算法首先计算语音信号的语谱图;其次,模仿选择性注意机制,计算语谱图的颜色、方向和亮度特征图,归一化后形成特征矩阵;然后,将特征矩阵重排列并进行PCA降维,形成情感识别特征向量;最后,利用改进的支持向量机分类方法进行语音情感识别。对愤怒、恐惧、高兴、悲伤和惊奇5种情感的识别实验显示,基于选择性注意的方法能够获得较好的识别效果,平均识别率为85.44%。相比于韵律特征和音质特征,语音情感识别率至少提高10%;相比于其它语谱特征,识别率提高7%左右。 相似文献
3.
提出了一种改进的混合蛙跳算法(shuffled frog leaping algorithm,SFLA),并提出了基于改进SFLA的认知无线电协作频谱感知方法,通过仿真对改进SFLA算法性能与传统SFLA算法性能进行了比较,并对本文提出的基于改进SFLA的协作感知方法与已有的基于修正偏差因子(modified deflection coefficient,MDC)的协作感知方法性能进行了比较.结果表明改进SFLA算法性能优于传统SFLA;基于改进SFLA的协作感知方法比MDC方法能获得更大的检测概率,验证
关键词:
认知无线电
频谱感知
混合蛙跳算法 相似文献
4.
5.
为了解决传统卷积神经网络识别连续语音数据时识别性能较差的问题,提出一种改进的卷积神经网络算法。该方法引入Fisher准则以及L2正则化约束,在反向传播调整参数阶段,既保证参数误差的最小化,又确保分类以后的样本类间分布较分散,类内分布较集中,同时保证网络权值具有合适的数量级以有效缓解过拟合问题;采用一种更符合生物神经元激活特性的新型log激活函数进行卷积神经网络的优化,进一步提高语音识别的正确率。在语音识别库TIMIT以及THCHS30上的实验结果表明,相较于传统卷积神经网络算法,本文提出的改进算法能较好的提高语音识别率,且泛化能力更强。 相似文献
6.
提出了一种用于认知无线电线性加权协作频谱感知的改进混合蛙跳算法(shuffled frog leaping algorithm, SFLA) 的群体初始化技术, 提出在SFLA初始群体中包含基于修正偏差因子所得的解, 从而改进算法初期性能. 仿真结果表明相比于传统群体初始化技术, 本文所提出的群体初始化技术能够以更快的速率得到期望解, 从而节约计算时间, 更有利于实时应用
关键词:
认知无线电
频谱感知
混合蛙跳算法
群体初始化 相似文献
7.
语音情感识别在许多领域具有重要研究价值,不同声学情感特征在使用不同分类器进行分类时,识别效果具有明显差异。与语音情感有关的声学特征包括谱特征、韵律学特征、音质特征。该文提出一种特征融合的方法,将3种声学特征中具有最好识别能力的特征进行融合:保留在实验中表现稳定且有较高识别率的谱特征的全部特征,提取韵律学、音质特征的相关统计量作为辅助特征融合于谱特征中。实验表明,该文所提出的融合特征在使用同一分类器进行分类时,识别率优于单一特征;当使用不同分类器时,融合特征依然具有较好的识别能力,且识别性能稳定,3个数据集上均有较好的识别率,基本实现跨数据集识别。 相似文献
8.
大豆品种快速准确的鉴别,对于鉴定种子品质、净化种业市场以及保障粮食安全具有重要意义。为解决传统农作物品种鉴别方法中存在精度差和效率低等问题,采用拉曼光谱结合特征波长提取方法建立偏最小二乘(PLS)鉴别模型,对黑龙江省4个高蛋白大豆品种(黑农88、黑农98、绥农71以及绥农76)进行快速鉴别。随机蛙跳(RF)算法是一种通过迭代计算变量被选概率,以确定变量重要性的新型特征波长选择算法,可以有效剔除全光谱数据中的冗余信息。该方法存在初始变量集随机性、所需迭代次数大、阈值选取不确定的问题,因此提出一种基于最小绝对收敛与选择算子(LASSO)回归的改进随机蛙跳(MRF)算法。采用LASSO算法提取与属性变量最相关的特征波长点作为RF初始变量集F0,消除初始变量的随机性,在此基础上开始迭代计算,可以减少无用迭代次数,提高模型的预测精确度。RF算法通过设定阈值的方法选择变量,因此提取的特征波长往往具有不确定性。改进如下:首先去除被选概率为0的变量,对于排序后变量以10个波长点为间隔,每次增加1个间隔建立特征波长与大豆品种属性的偏最小二乘回归模型,当交叉验证均方根误差(RMSEC... 相似文献
9.
针对传统算法在解决无线传感器网络覆盖优化上存在的覆盖率较低和节点分布不够均匀的问题,提出了一种改进的蛙跳算法;为了同时达到增加算法的种群多样性和加快算法收敛速度的目的,改进蛙跳算法分别增加了个体高斯学习机制和根据粒子群思想改进的更新策略,让族内最差个体在自身附近进行局部搜索,若无效,则使族内最差个体同时向族内最优个体和全局最优个体学习;在性能评估实验中,对改进的蛙跳算法分别进行了标准函数测试和无线传感器网络覆盖优化测试;测试结果表明,在6个标准测试函数中,改进的蛙跳算法与其他算法相比在4个测试函数上的收敛精度有了明显提高;在无线传感器网络覆盖优化中,改进的蛙跳算法也能够使节点分布更加均匀,使网络覆盖率达到了85.6%。 相似文献
10.
针对深度神经网络与隐马尔可夫模型(DNN-HMM)结合的声学模型在语音识别过程中建模能力有限等问题,提出了一种改进的DNN-HMM模型语音识别算法。首先根据深度置信网络(DBN)结合深度玻尔兹曼机(DBM),建立深度神经网络声学模型,然后提取梅尔频率倒谱系数(MFCC)和对数域的Mel滤波器组系数(Fbank)作为声学特征参数,通过TIMIT语音数据集进行实验。实验结果表明:结合了DBM的DNN-HMM模型相比DNN-HMM模型更具优势,其中,使用MFCC声学特征在词错误率与句错误率方面分别下降了1.26%和0.20%。此外,使用默认滤波器组的Fbank特征在词错误率与句错误率方面分别下降了0.48%和0.82%,并且适量增加滤波器组可以降低错误率。总之,研究取得句错误率与词错误率分别降低到21.06%和3.12%的好成绩。 相似文献
11.
Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition. 相似文献
12.
图像畸变校正是分布式孔径系统(DAS)需要解决的先期问题。介绍了描述图像径向与切向畸变的Brown模型及其畸变量(适应度)度量标准;讨论了智能优化算法之一的混合蛙跳算法(SFLA)及其初始种群拉丁超立方抽样(LHS)算法;分别对光线追迹畸变模型、Brown畸变模型进行了图像仿真和畸变校正处理。结果显示,原始点与校正点的最大误差距离在2个像素以内,验证了算法的有效性。最后应用该方法到实际广角CCD相机拍摄的靶纸校正中,得到了较满意的结果。该算法和仿真分析结果对DAS系统的研制具有一定理论和实验意义。 相似文献
13.
The explosion of different types of wireless communications is leading to an impending spectrum famine. As a result, spectrum sensing has gained increasing interest from governments, industry and regulators. In this paper, a novel approach for cooperative spectrum sensing is proposed based on a modified shuffled frog leaping algorithm (SFLA). This approach is to fuse the perceived results of multiple nodes, and to improve the detection reliability. Simulations are used to compare the performance of the modified SFLA to the conventional one. The performance of the proposed cooperative spectrum sensing method based on the modified SFLA and that of the cooperative spectrum sensing method using modified deflection coefficient (MDC) are also compared. Results show that the proposed SFLA outperforms the traditional SFLA, and the proposed cooperative spectrum sensing method based on the modified SFLA gives higher miss detection probability than the MDC-based method, which validates the effectiveness of the modified SFLA-based cooperative sensing method. 相似文献
14.
《声学学报:英文版》2015,(1)
针对训练样本与测试样本来自不同语音情感数据库造成特征向量空间分布不匹配的问题,采用半监督判别分析减小二者的差异。首先寻找有标签的训练样本和来自另一个库的部分无标签训练样本之间的最优投影方向。基于一致性假设即相近的点更有可能具有相同的类别,利用p近邻图对无标签训练样本相近点之间的关系进行建模,从而获得无标签样本的分布信息。在保证无标签样本间流形结构的同时,使所有训练样本类间散度和类内散度的比值达到最大,从而得到最优的投影方向。采用两组实验进行验证,第1组用eNTERFACE库训练去测试Berlin库,识别率为51.41%,第2组用Berlin库训练测试eNTERFACE库,识别率为45.76%,相比未采用半监督判别分析的识别结果分别有了13.72%和22.81%的提高,说明该算法的有效性。通过实验前后数据的可视化分析,说明利用半监督判别分析确实减小了不同库之间特征向量空间分布的不匹配问题,从而提高跨库语音情感识别率。 相似文献
15.
针对训练样本与测试样本来自不同语音情感数据库造成特征向量空间分布不匹配的问题,采用半监督判别分析减小二者的差异。首先寻找有标签的训练样本和来自另一个库的部分无标签训练样本之间的最优投影方向。基于一致性假设即相近的点更有可能具有相同的类别,利用p近邻图对无标签训练样本相近点之间的关系进行建模,从而获得无标签样本的分布信息。在保证无标签样本间流形结构的同时,使所有训练样本类间散度和类内散度的比值达到最大,从而得到最优的投影方向。采用两组实验进行验证,第1组用eNTERFACE库训练去测试Berlin库,识别率为51.41%,第2组用Berlin库训练测试eNTERFACE库,识别率为45.76%,相比未采用半监督判别分析的识别结果分别有了13.72%和22.81%的提高,说明该算法的有效性。通过实验前后数据的可视化分析,说明利用半监督判别分析确实减小了不同库之间特征向量空间分布的不匹配问题,从而提高跨库语音情感识别率。 相似文献
16.
The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments.To tackle this issue,an improved noise-robust sparse linear prediction algorithm is proposed.First,the linear prediction residual of speech is modeled as Student-t distribution,and the additive noise is incorporated explicitly to increase the robustness,thus a probabilistic model for sparse linear prediction of speech is built.Furthermore,variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters,and then the optimal linear prediction parameters are estimated robustly.The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years.Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications. 相似文献
17.
《声学学报:英文版》2014,(5)
语音线性预测分析算法在噪声环境下性能会急剧恶化,针对这一问题,提出一种改进的噪声鲁棒稀疏线性预测算法。首先采用学生t分布对具有稀疏性的语音线性预测残差建模,并显式考虑加性噪声的影响以提高模型鲁棒性,从而构建完整的概率模型。然后采用变分贝叶斯方法推导模型参数的近似后验分布,最终实现噪声鲁棒的稀疏线性预测参数估计。实验结果表明,与传统算法以及近几年提出的基于l_1范数优化的稀疏线性预测算法相比,该算法在多项指标上具有优势,对环境噪声具有更好的鲁棒性,并且谱失真度更小,因而能够有效提高噪声环境下的语音质量。 相似文献