首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we introduce cobalt (Co)-doped zinc oxide (ZnO) spherical beads (SBs), synthesized using a sonochemical process, and their utilization for an acetone sensor that can be applied to an exhalation diagnostic device. The sonochemically synthezied Co-doped ZnO SBs were polycrystalline phases with sizes of several hundred nanometers formed by the aggregation of ZnO nanocrystals. As the Co doping concentration increased, the amount of substitutionally doped Co2+ in the ZnO nanocrystals increased, and we observed that the fraction of Co3+ in the Co-doped ZnO SBs increased while the fraction of oxygen vacancies decreased. At an optimal Co-doping concentration of 2 wt%, the sensor operating temperature decreased from 300 to 250 °C, response to 1 ppm acetone improved from 3.3 to 7.9, and minimum acetone detection concentration was measured at 43 ppb (response, 1.75). These enhancements are attributed to the catalytic role of Co3+ in acetone oxidation. Finally, a sensor fabricated using 2 wt% Co-doped ZnO SBs was installed in a commercially available exhalation diagnostic device to successfully measure the concentration of acetone in 1 ml of exhaled air from a healthy adult, returning a value of 0.44 ppm.  相似文献   

2.
In this study, a number of propagation characteristics of hexagonal and octagonal photonic crystal fiber (H-PCF and O-PCF) structures, where both core and cladding are microstructured have been investigated by employing the full vectorial finite element method (FEM). The confinement loss, the effective refractive index and the relative sensitivity coefficient behaviors of the O-PCF and the standard H-PCF are numerically investigated and compared. It is found that under the same design parameters O-PCF structure has significantly lower losses and higher relative sensitivity coefficient compared with H-PCF structure.  相似文献   

3.
We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity. This sensor is configured by a triangular-prism-shaped long-period fiber grating, which is fabricated by the high frequency CO_2 laser polished method. The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement. In preliminary experiments, the torsion response of the sensor achieves a good stability and linearity. The torsion sensitivity is 0.54 nm/(rad/m), which renders the proposed structure a highly sensitive torsion sensor.  相似文献   

4.
韩雅  夏历  刘德明 《中国物理 B》2014,(10):225-229
We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.  相似文献   

5.
A high sensitivity fiber-optic torsion sensor, which can measure twist rate and determine twist direction simultaneously based on a novel ultra-long-period fiber grating (ULPFG) with a period of up to several millimeters, is proposed and demonstrated. Such an ULPFG is fabricated by using the high-frequency CO2 Laser pulses exposure technique. The unique torsion characteristics of the ULPFG are simply analyzed by using the mode coupling theory and the birefringence effect. The experimental results show that the high order resonant wavelengths of the ULPFG have higher torsion sensitivities, which is several times higher than that of the normal LPFG. In addition, an intensity-type demodulation approach used to realize real-time torsion measurement is proposed and demonstrated based on the edge filtering effect of the ULPFG.  相似文献   

6.
Optical fiber bend sensor with photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is demonstrated experimentally. The results show that the PCF-based MZI is sensitive to bending with a sensitivity of 3.046 nm/m−1 and is independent on temperature with a sensitivity of 0.0019 nm/°C, making it the best candidate for temperature insensitive bend sensors. To that end, another kind of bend sensor with higher sensitivity of 5.129 nm/m−1 is proposed, which is constructed by combining an LPFG and an MZI with zero offset at the second splice mentioned above.  相似文献   

7.
One-dimensional tungsten oxide (WO3) gas sensing materials have been widely used for the detection of trimethylamine (TMA) gas. Furthermore, it is believed that an effective method to improve the gas sensing performance is to introduce noble metals into sensing materials. In this work, a novel gas sensing material was prepared by decorating Au nanoparticles on WO3 nanorods. Based on field emission scanning electron microscopy (FESEM/EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the morphology and microstructure of as-prepared samples were characterized. Results show that Au nanoparticles with diameter of 13–15 nm are loaded on the surface of WO3 nanorods with length of about 1–2 µm and width of 50–80 nm. Gas sensing tests reveal that the Au@WO3 sensor has remarkably enhanced response to TMA gas compared with pure WO3 nanorods. In addition, and the gas sensing mechanism has been investigated based on the experimental results. The superior sensing features indicate the present Au@WO3 nanocomposites are promising for gas sensors, which can be used in the detection of the trimethylamine gas and this work provides insights and strategies for the fabrication of sensing materials.  相似文献   

8.
We propose a highly-sensitive distributed addressable liquid-droplet sensor based on an evanescent-wave linearly chirped fiber Bragg grating (LCFBG). Due to liquid-droplet-induced increase of the localized effective refractive index, a transmission window is generated within the original reflection stopband of LCFBG. Utilizing the spatial encoding feature of Bragg wavelength in LCFBG and spectrum properties of the created passband, both numerical and experimental results demonstrate that the position, size, and refractive index information of multiple distributed discrete liquid-droplets can be detected simultaneously.  相似文献   

9.
Wong WC  Chan CC  Chen LH  Tou ZQ  Leong KC 《Optics letters》2011,36(9):1731-1733
A highly sensitive miniature photonic crystal fiber refractive index sensor based on field mode excitation is presented. The sensor is fabricated by melting one end of a photonic crystal fiber into a rounded tip and splicing and collapsing the other end with a single-mode fiber. The rounded tip is able to induce cladding mode excitation, which resulted in an additional phase delay. Linear response of 262.28 nm/refractive index unit in the refractive index range of 1.337 to 1.395 is obtained for the physical length of a 953 μm sensor. The sensor is also shown to be insensitive to environmental temperature.  相似文献   

10.
A sensor for the highly sensitive determination of Sudan I based on the amplified electrochemical response of mesoporous TiO2-decorated graphene (GN–TiO2) was fabricated. The nanoparticles of TiO2 arrayed densely and uniformly on the GN sheets, as confirmed by field emission scanning electron microscopy and transmission electron microscopy images. The electrochemical behavior of Sudan I at this sensor was studied in detail, showing that this sensor exhibited electrocatalytic activity for the oxidation of Sudan I because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the experimental parameters including supporting electrolyte, volume of GN–TiO2 suspension on electrode surface, accumulation potential, and time were optimized and the electrochemical reaction mechanism of Sudan I on this sensor was investigated. The linear range is from 3.3 nM to 0.66 μM, and the limit of detection is estimated to be 0.60 nM. At last, the sensor was used to determine Sudan I in food sample extracts, which are in good agreement with the results obtained by chromatographic method.  相似文献   

11.
A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 X 10-6 by volume, which is significantly higher than that of the conventional sensors.  相似文献   

12.
Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.  相似文献   

13.
Hyperbolic metamaterials(HMMs) are novel artificial materials that excite the surface plasmon resonance(SPR) because of their unique hyperbolic dispersion properties. Herein, to the best of our knowledge, we propose the first HMM-based fiber SPR(HMM-SPR) sensor for vector magnetic detection. By selecting the composite materials and structural parameters of the HMM dispersion management, HMM-SPR sensors can achieve a high refractive index sensitivity of 14.43 μm/RIU. Vector magnetic field detecti...  相似文献   

14.
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.  相似文献   

15.
Sun  Dong  Wang  Sicen 《Ionics》2015,21(10):2905-2910
Ionics - Graphene nanosheets (GS) were easily prepared from graphite powder by one-step ultrasonic exfoliation in N-methyl-2-pyrrolidone (NMP). The resulting GS was used to modify the surface of...  相似文献   

16.
The characteristics of a novel magneto-optic surface-plasmon-resonance (MOSPR) sensor and its use for the detection of biomolecules are presented. This physical transduction principle is based on the combination of the magneto-optic activity of magnetic materials and a surface-plasmon resonance of metallic layers. Such a combination can produce a sharp enhancement of the magneto-optic effects that strongly depends on the optical properties of the surrounding medium, allowing its use for biosensing applications. Experimental characterizations of the MOSPR sensor have shown an increase in the limit of detection by a factor of 3 in changes of refractive index and in the adsorption of biomolecules compared with standard sensors. Optimization of the metallic layers and the experimental setup could result in an improvement of the limit of detection by as much as 1 order of magnitude.  相似文献   

17.
Wang YP  Xiao L  Wang DN  Jin W 《Optics letters》2006,31(23):3414-3416
A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/microepsilon and a low temperature sensitivity of 3.91 pm/ degrees C is fabricated by use of focused CO(2) laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 microepsilon/ degrees C without using temperature compensation.  相似文献   

18.
In this study,a new method utilizing surface plasmon resonance(SPR) sensing technology based on the phase and angular interrogations for measuring the refractive index of a liquid prism is presented.An orthogonal sample box that combined the functions of a prism,cell box,and mirror is adopted to simplify the system and provide the convenience to implement the phase and angular interrogations.The angular interrogation is achieved by the motorized rotation stage with the new sample box,and the phase interrogation is achieved by the linear polarization interferometry between the s-and p-polarization components.The amplitude reflectivity and the phase angle,which are the functions of the incident angle,are obtained by the reflection intensity and the interference intensity of the lights directly.A sensitivity of 7.5 × 10.7 refractive index unit(RIU)/0.1° and a dynamic range of 0.5 RIU are obtained experimentally and theoretically.  相似文献   

19.
要想实现弱光探测,需要探测器具有高灵敏度.石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于红外探测器的制作,然而这些材料存在弱光吸收、载流子迁移率低、空气稳定性差等问题,制约了其在高灵敏度红外探测领域的应用.同单一的二维材料相比,二维材料异质结不仅具有各...  相似文献   

20.
A simple and environmentally friendly approach was developed to fabricate silver nanoparticle (Ag NP)-decorated porous reduced graphene oxide (grGO) using glucose as a crosslinking and reducing agent. Physicochemical analysis, such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission-scanning electron microscopy (FE-SEM) were used to confirm the structural, morphological characteristics of the as-prepared samples. The electrocatalytic activity of Ag/grGO towards glucose oxidation was examined by cyclic voltammetry and amperometry. The fabricated sensor showed excellent sensitivity of 725.0 μA cm?2 mM?1 with a rapid response time of 11 s. Furthermore, the hybrids showed significant antibacterial activity against Escherichia coli with 99.76% antibacterial efficiency after 18 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号