首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用介观尺度格子Boltzmann方法数值研究壁面的表面特性对霜层生长的影响.将成核概率模型和改进的焓法相变模型相耦合,建立基于成核概率理论的霜层生长过程格子Boltzmann模型.该模型能够在宏观尺度上模拟霜层生长的加密加厚过程,也可以从微观尺度上描述局部的冰枝生长导致的霜层结构的动态变化,应用该模型能够获得霜层平均厚度、平均密度、结霜量等内部非稳态物理量.开展冷壁面上霜层形成及生长过程的数值研究,获得霜层的拓扑结构时空演化特性,得到不同时刻下结霜量以及霜层的平均厚度、平均密度、平均固相体积分数,探讨冷壁面温度、相对湿度、冷表面浸润性能对结霜的影响.  相似文献   

2.
和琨  郭秀娅  张小盈  汪垒 《物理学报》2021,(14):388-402
采用格子Boltzmann方法对方腔内介电相变材料的熔化过程进行数值模拟与分析,系统研究了电场力和浮升力耦合作用下固液相变传热过程的流体流动、电荷输运以及传热等基本特征,重点分析了电瑞利数T、斯蒂芬数Ste、离子迁移率M和普朗特数Pr等多个无量纲参数对固液相变传热过程的影响.研究表明,与浮升力驱动下的固液相变情况相比,...  相似文献   

3.
格子Boltzmann方法在相变过程中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了一种新的描述气液相变过程的单组分格子Boltzmann模型,利用该模型模拟水以及氨分别在R-K,RKS和P-R状态方程控制下的相变过程,发现相对于R-K和RKS状态方程,水以及氨在P-R状态方程控制下模拟结果均与实验值更接近;特别地,P-R状态方程更适合描述氨.为验证该模型处理两相问题的能力,利用该模型模拟不同温度下水以及氨在P-R状态方程控制下的界面密度梯度,所得的结果与经典的界面理论相符.为此,进一步探讨了气泡(液滴)与周围液体(气体)处于力平衡和热平衡时,气泡(液滴)内外压力差在不同温度下与其半径之间的关系,所得的结果满足Laplace定律,并得到了不同温度下水以及氨的表面张力,发现均与实验值符合得很好,且与表面张力临界理论甚为相符.  相似文献   

4.
文中基于气液两相接触时的传质机理和两相格子Boltzmann理论模型,提出相界面的密度数处于气液相密度数之间,对低温液滴相变进行了模拟研究。在低温状态下,对单个液滴进行了均匀蒸发现象模拟,分析了不同过热度对蒸发速率的影响,并模拟运动液滴的相变。结果表明,所采用的格子Boltzmann方法能够有效分析模拟低温介质的相变。  相似文献   

5.
液滴撞击液膜过程的格子Boltzmann方法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
黄虎  洪宁  梁宏  施保昌  柴振华 《物理学报》2016,65(8):84702-084702
本文采用格子Boltzmann方法对液滴撞击液膜过程进行了研究, 主要考察了雷诺数(Re)、韦伯数(We)、相对液膜厚度 (h) 以及表面张力 (σ) 等物理参数对界面运动过程的影响. 首先, 随着Re数和We数的增加, 可以明显观察到液滴撞击液膜过程中形成的皇冠状水花以及卷吸现象; 当Re数较大时, 液体会发生飞溅, 由液体飞溅形成的小液滴则会继续下落, 并与液膜再次发生碰撞. 其次, 当相对液膜厚度较小时, 液滴撞击液膜并最终导致液膜断裂; 然而随着相对液膜厚度的增大, 尽管撞击过程溅起的液体会越来越多, 但是液膜并不会发生断裂. 再次, 随着表面张力的增大, 界面变形阻力增大, 撞击过程中产生的界面形变也逐渐减弱. 最后还发现皇冠(由液滴溅起形成)半径r 随时间满足r/(2R) ≈ α√Ut/(2R), 这一结果与已有结论是一致的.  相似文献   

6.
十三点格子Boltzmann模型仿真   总被引:2,自引:1,他引:1  
格子气和格子Boltzmann方法的迅速发展提供了一类求解流体力学问题的新方法。格子Boltzmann方法在保留了格子气模型优点的同时,克服了它的不足之处。本文讨论了一种三迭加HPP十三点模型,通过选择适当的平衡分布及参数,并用Chapman-Enskog展开和多尺度技术导出了Navier-Stokes方程。在微机上模拟了空腔流的流动问题,并与传统方法的计算结果进行了比较,结果表明该模型能较好的模拟复杂流动现象,并具有较好的工程应用背景。  相似文献   

7.
曾建邦  李隆键  蒋方明 《物理学报》2013,62(17):176401-176401
利用精确差分格子Boltzmann模型探讨水在特定温度下的亚稳态及不稳定平衡态, 获得等温相变过程中形成气泡和液滴的条件, 模型预测结果与理论解符合良好. 在该等温模型的基础上耦合能量方程, 通过调节流体-壁面相互作用力获得不同的气泡与固壁间接触角, 从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 利用该新模型模拟不同流体-壁面相互作用力下凹坑气泡成核过程, 再现了气泡成核过程中的三阶段特性; 探讨了接触角、曲率半径及气泡体积随气泡成核过程的变化关系, 获得了与文献结果定性符合的曲率-气泡体积关系曲线. 关键词: 格子Boltzmann方法 气泡成核过程 气液相变 接触角  相似文献   

8.
基于相变材料(PCM,phase change material)的相变储能设备具有储能密度高的特点。本文建立了基于相变储能元件伪焓模型的固液相变格子Boltzmann模型,研究了内部管道位置、方腔倾斜角度对PCM融化过程的影响规律。结果表明,在内管道靠近方腔上部时,由于上部界面(固液相变界面或上壁面)对自然对流阻碍作用,使PCM的融化速率减慢。但是,在此时使方腔发生倾斜,会改变管道热流体到上部界面的距离,强化PCM的热质传递过程,使融化加快。  相似文献   

9.
格子Boltzmann亚格子模型的研究   总被引:2,自引:1,他引:1  
为了将格子Boltzmann法应用于大雷诺数流动的模拟,本文将Smagorinsky亚格子模型和LBGK模型相结合,并对该亚格子LBM模型进行了研究。利用该亚格子LBM模型,对二维顶盖驱动流进行了模拟,得到了若干大雷诺数下流线图和方腔中心线上无量纲速度分布。计算结果与基准解进行比较,两者相互吻合。  相似文献   

10.
任晟  张家忠  张亚苗  卫丁 《物理学报》2014,63(2):24702-024702
使用格子Boltzmann方法对零质量射流激励下液体的相变演化过程进行了数值模拟和分析.首先,提出了此特定零质量射流进出口边界的处理格式.然后,结合Shan和Doolen提出的单组分多相模型,模拟了方腔内液体受到此零质量射流激励而诱发产生空化的过程,着重分析了三个重要射流参数ε/T,T和v out/v in对方腔内液体相变的影响.分析表明:演化过程中方腔内气相节点数量在初始阶段急剧增长,然后经振荡趋于一个稳定值.由于ε/T和v out/v in可以反映射流在出入方腔两个过程间相互转换时的急剧变化,所以能够影响方腔中的液体相变的演化;而改变参数T并不影响射流速度的变化程度,所以T对液体相变的影响较弱.对于本文给定的参数取值,ε/T较小时,方腔内液体相变生成的孤立气泡脱离壁面;较大的ε/T下产生附着于方腔壁面的气泡,并且能够加速液体的相变进程;v out/v in的增加使方腔内相应的孤立气泡所覆盖的范围略有减小.研究结果揭示了零质量射流激励诱发的液体相变过程,为进一步探索液体空化的控制途径奠定了基础.  相似文献   

11.
A cascaded lattice Boltzmann (CLB) model is constructed for simulating heat transfer in metal-foam-based solid-liquid phase change materials (PCMs). The present model captures the phase interface implicitly via the enthalpy methodology, and to avoid iterations in simulations, the CLB equation of the PCM employs the enthalpy as the basic evolution variable through modifying the cascaded collision process. Numerical results demonstrate the effectiveness and practicability of the CLB model for investigating heat transfer in solid-liquid PCMs with metal foams. The effects of the inertial coefficient, permeability and porosity on the melting process are investigated. The results indicate that the empirical correlations of inertial coefficient and permeability based on packed beds overestimate the melting rate at high porosities. Moreover, the porosity has significant impact on phase-change processes. The melting rate increases as the porosity of the metal foam decreases since heat conduction through high thermal conductive metal foam dominates the total heat transfer.  相似文献   

12.
王子墨  李凌 《计算物理》2020,37(3):299-306
采用双重分布函数的格子玻尔兹曼模型,对单脉冲激光金属打孔过程中的快速相变传热进行研究.模型考虑了金属材料熔化后熔体的流动换热,并采用浸没移动边界方案对过程中的固液界面进行追踪.采用纯导热模型和考虑对流的换热模型计算,将结果和试验进行对比,结果表明:在激光打孔过程中熔体的流动对相变传热产生较大影响,采用考虑流动换热模型的结果与实验更接近.进而对熔化速度、熔化深度以及温度场的变化进行分析,并探讨不同激光工艺参数对相变过程的影响.模拟发现一个脉冲结束后,激光的脉宽越大,孔深越小,孔径越大,且最高温度较短脉冲激光越低.  相似文献   

13.
In this paper,we present a Cole-Hopf transformation based lattice Boltzmann(LB) model for solving one-dimensional Burgers' equation,and compared to available LB models,the effect of nonlinear convection term can be eliminated.Through Chapman-Enskog analysis,it can be found that the converted diffusion equation based on the Cole-Hopf transformation can be recovered correctly from present LB model.Some numerical tests are also performed to validate the present LB model,and the numerical results show that,similar to previous LB models,the present model also has a second-order convergence rate in space,but it is more accurate than the previous ones.  相似文献   

14.
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for small flow velocity and at a singular value of the temperature. To that end, we propose a unified formulation that restores Galilean invariance and the isotropy of the stress tensor by introducing an extended equilibrium. This modification extends lattice Boltzmann models to simulations with higher values of the flow velocity and can be used at temperatures that are higher than the lattice reference temperature, which enhances computational efficiency by decreasing the number of required time steps. Furthermore, the extended model also remains valid for stretched lattices, which are useful when flow gradients are predominant in one direction. The model is validated by simulations of two- and three-dimensional benchmark problems, including the double shear layer flow, the decay of homogeneous isotropic turbulence, the laminar boundary layer over a flat plate and the turbulent channel flow.  相似文献   

15.
A lattice Boltzmann model (LBM) has been developed for simulating magnetohydrodynamics (MHD) along the line of Dellar [J. Comput. Phys. 179 (2002)95]. In this model the magnetic field is presented by a vector valued magnetic distribution function which obeys a vector Boltzmann equation. The truncated error of the equilibrium distribution in the present model is up to order O(u^4) in velocity u rather than the usual 0(u^3). For verification, the model is applied to solve the shock tube problem and the main features of the flow predicted by the model are found to compare well with the corresponding results obtained with high-order semi-discrete schemes [J. Comput. Phys. 201 (2004) 261]. The numerical experiments have also shown that the present LBM model with the equilibrium distribution truncated at O(u^4) performs much better in terms of numerical stability than those truncated at O(u^3).  相似文献   

16.
A highly efficient three-dimensional (3D) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model isvalidated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.  相似文献   

17.
A New Lattice Boltzmann Model for KdV-Burgers Equation   总被引:2,自引:0,他引:2       下载免费PDF全文
马昌凤 《中国物理快报》2005,22(9):2313-2315
A new lattice Boltzmann model with amending-function for KdV-Burgers equation, ut + uux -αuxx + βuxxx = 0, is presented by using the single-relaxation form of the lattice Boltzmann equation. Applying the proposed model, we simulate the solutions of a kind of KdV-Burgers equations, and the numerical results agree with the analytical solutions quite well.  相似文献   

18.
A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.  相似文献   

19.
针对Burgers-Korteweg-de Vries(cBKdV)复合方程提出一种格子Boltzmann模型.通过恰当地处理色散项uxxx并运用Chapman-Enskog展开从格子Boltzmann方程推导出宏观方程,从而得到联系微观量与宏观量的局部平衡分布函数.对不同微分方程进行数值实验,数值解与解析解非常吻合,相比于其它数值结果,该格子Boltzmann模型的数值结果更精确,说明该数值模型的高效性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号