首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behar V  Adam D 《Ultrasonics》2005,43(10):777-788
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.  相似文献   

2.
A method for ultrasonic synthetic aperture imaging using finite-sized transducers is introduced that is based on a compact, linear, discrete model of the ultrasonic measurement system developed using matrix formalism. Using this model a time-domain algorithm for deconvolution of the transducer's spatial impulse responses (SIRs) is developed that is based on a minimum mean square error (MMSE) criterion. The algorithm takes the form of a spatiotemporal filter that compensates for the SIRs associated with a finite-sized transducer at every point of the processed image. A major advantage of the proposed method is that it can be used for any transducer, provided that its associated SIRs are known. This is in contrast to the synthetic aperture focusing technique (SAFT), which treats the transducer as a point source. The performance of the method is evaluated with simulations and experiments, performed in water using a linear phased array. The results obtained using the proposed method are compared to those obtained with a classical time-domain SAFT algorithm. For a finite aperture source, it is clearly shown that the resolution obtained using the proposed method is superior to that obtained using the SAFT algorithm.  相似文献   

3.
Behar V  Adam D  Friedman Z 《Ultrasonics》2003,41(5):377-384
A new method of spatial compound imaging is presented that improves image quality without the usual requirement to decrease the frame rate. The new method of imaging utilizes three transducers for data acquisition. The transducer located at the center of the transducer system is a phased array probe that acts as both transmitter and receiver. The other transducers are unfocused pistons that act only as receivers. Envelope data acquired by each transducer are combined to form a final image with improved quality (speckle contrast, target detectability and lateral resolution). It is shown that the improvement in speckle contrast depends on the correlation between individual images acquired by the transducers. The effective aperture approach is used for analytic estimation of the correlation between images in order to optimize the lateral separation between transducers. Using simulations, several compounding strategies have been performed to find the strategy that maximizes image quality. The central frequency of 2.5 MHz is used in simulations. Quantitative analysis of simulated B-mode images shows that the new method of imaging efficiently improves visibility, detectability, and lateral resolution of low contrast regions. The image frame rate is preserved because multiple scans are not required for the spatial compounding.  相似文献   

4.
采用离子交换工艺和精密加工技术制作了方形自聚焦透镜5×5阵列,并对其成像特性进行研究。结果表明:方形自聚焦透镜阵列相对于圆形孔径阵列而言,能有效增大填充系数,提高受光面积,其多重像和综合像的像质均匀,成像质量好。分析了导致多重像偏离和综合像变形的原因,并给出解决这一问题的关键技术。  相似文献   

5.
二维圆周光综合孔径阵的优化排列及其成像特性研究   总被引:4,自引:4,他引:4  
陈海亭  江月松  钟宇 《光学学报》2005,25(12):616-1622
光综合孔径成像的原理是应用干涉原理在空间频率域中进行采样,并通过傅里叶反变换或其他数值变换方法得到空间分辨力远高于单个孔径成像系统的目标图像。由若干个相同的小孔径在二维圆周上优化排列组成的综合孔径成像系统可以在二维空间频率域中实现较为均匀分布的、具有无冗余度的采样点覆盖,为高质量实时成像提供了一个有效的途径。运用模拟退火算法对由7~16个子孔径组成的二维圆周综合孔径阵列进行优化排列。并依据光学衍射成像原理,从空域和频域两个方面详细分析了二维圆周上优化排列与均匀排列光综合孔径阵的成像特性。对7~16个子孔径组成的光综合孔径的仿真结果表明:无论是在空域还是频域上,子孔径直径增大、孔径数目增多以及综合孔径阵的优化排列都是有利于提高成像质量的。但综合后的子孔径的直径的增大,虽然能获得极高的角分辨力,却并不利于成像质量的提高。  相似文献   

6.
According to ISO10110-7 and the engineering standards of Inertial Confinement Fusion (ICF), this paper presents a microscopic scattering imaging and analyzing system which allows one to automatically evaluate defects in random distributions and shapes on the surface of fine optical components of large aperture. The annularly disposed multi-beam fiber light sources illuminate the target surface with a special angle. The image, which has bright defects on black background, is suitable for digital image processing. With XY-scanning system, the defect information of full aperture can be obtained by stitching the sub-aperture image array, according to the algorithms of template matching. The full aperture image is divided into N × N sub-apertures, each of which has view field of approximate 3 mm × 4 mm. Image processing software for image recognition has been established using mathematical morphology with high computing efficiency and friendly graphics user interface. A group of standard reticules fabricated by binary optics can scale defects for calibration. As a result the lateral resolution of the system is better than sub-micrometer while the total view field can be hundreds of millimeters. The comparison quantitative data results between the experiment and standard demonstrate the system is competent for the digital evaluation of defect characterization of fine optical surfaces, especially for the ones with large aperture.  相似文献   

7.
Liao CK  Li ML  Li PC 《Optics letters》2004,29(21):2506-2508
Optoacoustic imaging takes advantage of high optical contrast and low acoustic scattering and has found several biomedical applications. In the common backward mode a laser beam illuminates the image object, and an acoustic transducer located on the same side as the laser beam detects the optoacoustic signal produced by thermoelastic effects. A cross-sectional image is formed by laterally scanning the laser beam and the transducer. Although the laser beam width is generally narrow to provide good lateral resolution, strong optical scattering in tissue broadens the optical illumination pattern and thus degrades the lateral resolution. To solve this problem, a combination of the synthetic aperture focusing technique with coherence weighting is proposed. This method synthesizes a large aperture by summing properly delayed signals received at different positions. The focusing quality is further improved by using the signal coherence as an image quality index. A phantom comprising hair threads in a 1% milk solution was imaged with an optoacoustic imaging system. The results show that the proposed technique improved lateral resolution by 400-800% and the signal-to-noise ratio by 7-23 dB over conventional techniques.  相似文献   

8.
一种机载合成孔径成像激光雷达聚束模式成像算法   总被引:10,自引:1,他引:9  
郭亮  邢孟道  梁毅  唐禹 《光学学报》2008,28(6):1183-1190
合成孔径成像激光雷达是一种新的主动式有源的成像系统,可以获得比合成孔径雷达更高的分辨率,和更接近光学图片的效果.首先,在理想条件下分析了调频连续波的信号模型,推导出在连续波系统聚束模式下一种适用于机载合成孔径成像激光雷达系统的频率变标算法.然后,使用傅里叶变换法对符合von Karman谱的随机相位屏模拟大气湍流,并分析了Fried参量和合成孔径长度之间的关系.最后,仿真说明真空中采用方位预处理可以消除图像重影,并且补偿多普勒频移项可以消除8.6~9.3dB的能量损失和使图像散焦的现象.而在有大气影响时,合成孔径长度的选择小于Fried参量时,图像方位向可以良好聚焦.  相似文献   

9.
The lateral resolution of digital data from the planar (unfocused) pulse-echo transducers used in conventional ultrasonic inspections can be improved using the synthetic aperture focusing technique (SAFT).

For practical applications it is important to minimize the level of sidelobes (artefacts) introduced by SAFT, without significant loss of resolution. This may be achieved by the inclusion of a suitable aperture-weighting function in the SAFT algorithm, combined with a synthetic aperture size related to the width of the transducer beam-spread.

The properties of the resulting optimized SAFT algorithm are quantified using experimental data from a series of artificial flaws (slots) of different sizes.  相似文献   


10.
太赫兹综合孔径近场成像系统设计   总被引:1,自引:1,他引:0       下载免费PDF全文
根据太赫兹成像兼具微波穿透特性和红外线高分辨率成像的特点,在红外与毫米波成像系统的基础上,提出一种近场太赫兹波被动干涉合成孔径成像系统的设计方案,并对其实现方法进行了分析。系统采用二维波束扫描天线结构实现综合孔径成像,在保证高精度成像的同时降低了系统的复杂度。通过数值仿真对成像系统的成像性能进行分析,仿真结果表明系统具有较高的空间分辨率;并对系统的成像过程进行了模拟仿真,验证了系统的可行性。  相似文献   

11.
根据太赫兹成像兼具微波穿透特性和红外线高分辨率成像的特点,在红外与毫米波成像系统的基础上,提出一种近场太赫兹波被动干涉合成孔径成像系统的设计方案,并对其实现方法进行了分析。系统采用二维波束扫描天线结构实现综合孔径成像,在保证高精度成像的同时降低了系统的复杂度。通过数值仿真对成像系统的成像性能进行分析,仿真结果表明系统具有较高的空间分辨率;并对系统的成像过程进行了模拟仿真,验证了系统的可行性。  相似文献   

12.
针对合成孔径声呐中阵元相位不一致导致互相关时延补偿算法对成像质量提升效果有限的问题,提出了一种脉冲压缩与互相关联合的回波时延补偿算法.该算法利用脉冲压缩回波的互相关对原始回波相位畸变进行校正,实现粗补偿;联合脉冲压缩与偏移相位中心算法实现精细时延补偿,对不同合成孔径位置各阵元回波时延差实现了较为准确的估计,增强了成像效果。试验数据经该算法处理后,回波时延得到较为精确的补偿,地貌成像结果的亮度、对比度等统计特性得到不同程度的提高,且纹理细节增多;典型线缆目标的成像聚焦加深,成像长度误差约由5%减小为0.8%。试验结果显示,该算法对互相关时延补偿方法改进效果明显,验证了算法的可行性、有效性。  相似文献   

13.
提出一种针对水下稀疏目标的时域压缩合成孔径声呐成像方法(TC-SAS),实现了水声目标高分辨实时成像。通过多子阵的孔径合成,在时域上构造出成像网格格点到有效孔径内逐帧阵列的格林函数,并给出成像区域散射强度到数据域的映射矩阵;然后利用该区域空域稀疏的先验知识,通过正交匹配追踪的稀疏重构方式,解算出成像区域散射系数矩阵,实现了稀疏目标高分辨成像.同时,针对线性调频信号提出数据缩减的方法,通过对观测数据和字典矩阵同时脉压后截取,减小了数据规模;进一步结合二维矩阵数表查表的方法,以空间换时间,实现了区块实时成像。数值仿真以及湖试试验表明,所提算法能分辨出传统的时延求和算法难以分辨的目标,并且在图像清晰度指标上平均提升4.9 dB.改善了合成孔径声呐的成像质量.  相似文献   

14.
光学稀疏孔径系统的成像及其评价方法   总被引:5,自引:2,他引:3  
对典型阵列结构的光学稀疏孔径系统成像特性进行了数值仿真分析,并采用基于光学实验测量的调制传递函数(MTF)完成了光学稀疏孔径系统成像实验的图像复原处理.针对复杂目标成像,为了评价光学稀疏孔径系统最终成像的整体质量,不仅考虑系统的调制传递函数指标,还提出了一种基于相关系数的成像质量客观评价方法.数值仿真结果和光学实验结果均表明,基于相关系数的成像质量客观评价方法是可行的,实验说明光学稀疏孔径系统成像质量可以达到其等效单个大孔径成像系统的成像效果.  相似文献   

15.
Row–column addressed arrays for ultrasonic non-destructive testing (NDT) applications are analyzed and demonstrated in this paper. Simulation and experimental results of a row–column addressed 32 by 32 capacitive micromachined ultrasonic transducer (CMUT) array are presented. The CMUT array, which was designed for medical imaging applications, has a center frequency of 5.3 MHz. The CMUT array was used to perform C-scans on test objects with holes that have diameters of 1.0 mm and 0.5 mm. The array transducer has an aperture size of 4.8 mm by 4.8 mm, and it was used to scan an area of 4.0 mm by 4.0 mm. Compared to an N by N fully addressed 2-D array, a row–column addressed array of the same number of elements requires fewer (N instead of N2) pairs of interconnection and supporting electronic components such as pulsers and amplifiers. Even though the resulting field of view is limit by the aperture size, row–column addressed arrays and the row–column addressing scheme can be an alternative option of 2-D arrays for NDT applications.  相似文献   

16.
即时/准即时u-v覆盖的光学综合孔径成像分析   总被引:1,自引:1,他引:0  
介绍了即时/准即时u-v覆盖的光学综合孔径成像技术实时/准实时观测的优点,并以LBT为实例进行了成像分析.对LBT采用快速傅里叶变换、卷积与反卷积算法获得系统的点扩展函数(PSF)与光学传递函数(OTF);探讨了全局传递函数及其对成像效果的影响,说明了即时/准即时u-v覆盖成像特性;用实验仿真的方法验证了全局传递函数在满足准即时u-v覆盖成像的要求情况下能够对天体目标进行较好的图像恢复.  相似文献   

17.
Jeong JS  Chang JH  Shung KK 《Ultrasonics》2012,52(6):730-739
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9 MHz frequency sweep range is used for B-mode imaging and 4 MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4 MHz and 8 MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6 MHz imaging signals and two outer elements are only used for transmitting 4 MHz continuous HIFU wave. When the chirp signal and 4 MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4 MHz and 8 MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to −45 dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.  相似文献   

18.
直线阵光学综合孔径成像中的子孔径尺寸效应   总被引:9,自引:5,他引:4  
江月松 《光学学报》2005,25(8):042-1047
光学综合孔径阵列中的子孔径的位置和直径的大小对成像质量有着重要的影响。详细分析了几种不同优化排列的光学综合孔径直线阵列的无像差点扩展函数、光学传递函数和衍射成像特性.结果表明,子孔径的位置不同.光学传递函数的空间频率覆盖有很大的差异。增大子孔径的直径可以增大空间频率覆盖程度.但子孔径直径过大时义会产生空间频率冗余度和增加制造成本。直线阵光学综合孔径的衍射成像是多重像,子孔径直径的增大还可以减小重影的程度,提高成像质量。结果说明,在进行光学综合孔径阵列优化排列时必须考虑子孔径的直径大小这个重耍的因素。  相似文献   

19.
Agarwal A  Yoo YM  Schneider FK  Kim Y 《Ultrasonics》2008,48(5):384-393
Quadrature demodulation-based phase rotation beamforming (QD-PRBF) is commonly used to support dynamic receive focusing in medical ultrasound systems. However, it is computationally demanding since it requires two demodulation filters for each receive channel. To reduce the computational requirements of QD-PRBF, we have previously developed two-stage demodulation (TSD), which reduces the number of lowpass filters by performing demodulation filtering on summation signals. However, it suffers from image quality degradation due to aliasing at lower beamforming frequencies. To improve the performance of TSD-PRBF with reduced number of beamforming points, we propose a new adaptive field-of-view (AFOV) imaging method. In AFOV imaging, the beamforming frequency is adjusted depending on displayed FOV size and the center frequency of received signals. To study its impact on image quality, simulation was conducted using Field II, phantom data were acquired from a commercial ultrasound machine, and the image quality was quantified using spatial (i.e., axial and lateral) and contrast resolution. The developed beamformer (i.e., TSD-AFOV-PRBF) with 1024 beamforming points provided comparable image resolution to QD-PRBF for typical FOV sizes (e.g., 4.6% and 1.3% degradation in contrast resolution for 160 mm and 112 mm, respectively for a 3.5 MHz transducer). Furthermore, it reduced the number of operations by 86.8% compared to QD-PRBF. These results indicate that the developed TSD-AFOV-PRBF can lower the computational requirement for receive beamforming without significant image quality degradation.  相似文献   

20.
甘勇  陈尧  石文泽  陈果  卢超 《应用声学》2019,38(2):173-178
利用虚拟声源和合成孔径聚焦相结合的复合成像技术解决复杂曲面构件超声检测图像中的缺陷位置失真问题。首先,在水浸检测条件下利用128阵元线性阵列换能器中采集曲面构件内部缺陷的B扫描数据。通过相邻阵元界面回波时间差构建虚拟声源,并将其定义为声波在水-构件双层界面上的入射点。然后,根据实际阵元-虚拟声源-聚焦目标三者之间的声传播路径,通过合成孔径聚焦技术将各路阵元的接收信号反推至虚拟声源处进行图像的延时叠加重建,最终获得复杂曲面构件中缺陷的超声图像。结果表明,与传统B扫图像和合成孔径聚焦图像相比,虚拟源-合成孔径聚焦图像能够准确呈现复杂曲面构件的表面轮廓,精确表征构件内部的缺陷位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号