首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behar V  Adam D 《Ultrasonics》2005,43(10):777-788
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.  相似文献   

2.
光学综合孔径成像技术实验研究   总被引:2,自引:0,他引:2  
根据光学综合孔径成像系统的成像质量与点扩散函数和光学传递函数的关系,以G o lay-3阵列结构为例,从空间域和频率域对光学综合孔径成像技术进行理论仿真和实验研究。在空间域从理论上分析光学综合孔径成像系统的点扩散函数,对复杂目标的成像通过目标函数与点扩散函数的卷积求得,点扩散函数决定了成像质量。通过数值仿真和模拟实验取得了点扩散函数强度分布图,两者分布规律一致证明理论分析正确。在频率域研究光学综合孔径调制传递函数,理论仿真和实验取得的调制传递函数表明,空间域和频率域内光学综合孔径成像技术的理论分析与实验结果具有较好的一致性。  相似文献   

3.
光学合成孔径成像技术发展概况   总被引:4,自引:0,他引:4  
张伟  王治乐  龙伟军 《光学技术》2003,29(6):757-761
介绍了光学合成孔径成像技术的发展现状。简要阐明了合成孔径成像技术的原理和分类以及在光学波段的主要应用。归纳出了光学合成孔径成像技术的发展趋势:地基合成孔径系统向长基线方向发展;天基系统向超轻量化方向发展;图像处理正在成为系统不可分割的一部分;技术重点是从地基系统向天基系统转移,并被应用于更多领域。概括了光学合成孔径成像系统的各种应用方案及特点。与传统的光学系统相比,合成孔径成像技术具有如下特征和优点:可降低光学元件的加工难度和天基光学合成孔径成像系统的发射体积和重量,可节约发射费用。  相似文献   

4.
In synthetic transmit aperture medical ultrasound imaging field,a compressed sensing ultrasound imaging method based on the sparsity in frequency domain is presented in order to reduce huge amount of data and large numbers of receiving channels.First,the sparsity in frequency domain is verified.Then the echo signal is compressively sampled in time-spatial domain based on compressed sensing and the echo signal is reconstructed by solving an optimization problem.Finally the image is made by using the synthetic transmit aperture approach.The experiments based on point target and fetus target are used to verify the proposed method.The MSE,resolution and image quality of reconstructed image and those of original image are compared and analyzed.The results show that only 30%amount of data and 50%of receiving channels were used to implement ultrasound imaging without reducing the quality of image in experiment.The amount of data and the complexity of system are reduced greatly by the proposed method based on compressed sensing.  相似文献   

5.
首先阐明了光学合成孔径成像系统的原理。合成孔径成像系统在获得高截止频率的同时,降低了系统的中频性能,并且合成孔径成像系统的信息获取在方向上具有可选择性。然后对合成孔径成像系统的点扩散函数和光学传递函数进行了计算机仿真,仿真结果与合成孔径系统的成像原理一致。最后通过对辐射靶标的成像实验,再次对合成孔径成像系统的特性进行了验证。  相似文献   

6.
Interferometric synthetic aperture microscopy (ISAM), which can increase transverse resolution with fixed depth of field in the spectral domain optical coherence tomography (SDOCT) is analyzed. Due to the high computational complexity needed for ISAM, the approximate wavenumber domain algorithm or ωKA is applied, which can save much rebuilding time without the Stolt interpolation. The multiple scatterers simulation and improved two-dimensional (2D) imaging of fresh pig liver based on the proposed ωKA approach are demonstrated. The current simulation and experimental results prove the effectiveness of the approximate ωKA.  相似文献   

7.
Kim BH  Kim GD  Song TK 《Ultrasonics》2007,46(2):148-154
The compression error of post-compression based coded excitation techniques increases with decreasing f-number, which causes the elevation of side-lobe levels. In this paper, a post-compression based coded excitation technique with reduced compression errors through dynamic aperture control is proposed. To improve the near-field resolution with no frame rate reduction, the proposed method performs simultaneous transmit multi-zone focusing using two mutually orthogonal complementary Golay codes. In the proposed method, the two mutually orthogonal sequences of length 16 are simultaneously transmitted toward two different focal depths, which are separately compressed into two short pulses on receive after dynamic focusing is performed. After carrying out the same transmit-receive operation for the same scan line with the complementary set of the orthogonal Golay codes, a single scan line with two transmit foci is obtained.The computer simulation results using a linear array with a center frequency of 7.5 MHz and 60% 6 dB bandwidth show that the range side-lobe level can be suppressed below −50 dB, when f-number is maintained not smaller than 3. The performance of the proposed scheme for a smaller f-number of 2 was also verified through actual experiments using a 3.85 MHz curved linear array with 60% 6 dB bandwidth. Both the simulation and experimental results show that the proposed method provides improved lateral resolution compared to the conventional pre-compressed and post-compression based coded excitation imaging using Golay codes.  相似文献   

8.
杨国光  徐明 《光学学报》1993,13(9):05-811
本文对一种成像系统——光栅干涉合成孔径成像系统进行了研究,证明这种频域成像系统具有高分辨,甚至超分辨的性能.用计算机控制的模拟点目标以及同步光栅扫描,完成了二维孔径合成实验,证明这种大瞬时光谱带宽的频谱孔径不受衍射极限限制,对空间点目标有极高的位置分辨率,存在超分辨的可能性.  相似文献   

9.
The existing spatially variant apodizations(SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe.To improve this,a modified SVA(MSVA) is put forward in this paper,which expands the traditional filter from 3-taps to 5-taps and sets relevant parameters according to different sampling rates to get the excellent result that satisfies constrained optimization theory.A modified super-SVA is also presented,which compares the result after the iteration with the original signal ...  相似文献   

10.
Hongyan Li 《Optics Communications》2011,284(9):2268-23630
In on-axis lensless Fourier phase-shifting synthetic aperture digital holography, to compose all of the phase-shifting sub-holograms to a large synthetic aperture digital hologram effectively, firstly, the cross-correlation algorithm of the object waves is presented to correct the joint misplacement of the sub-holograms. Secondly, to make the phase-shifting synchronization matching of different sequence phase-shifting holograms, the cross-correlation algorithm of the phase-shifting holograms is employed. Compared with the traditional cross-correlation algorithm of the sub-holograms, the proposed approach makes the joint precision of the sub-holograms reach sub-pixel accuracy, and the resolution of the reconstructed image is improved significantly. In general, the proposed approach is effective in restraining the quality degradation of the synthetic reconstructed image that comes from the joint misplacement of the sub-holograms and the phase-shifting non-synchronization of the phase-shifting holograms.  相似文献   

11.
It is desired that the same imaging functional modules such as beamformation, envelope detection, and digital scan conversion (DSC) are employed for the efficient development of a cross-sectional photoacoustic (PA) and ultrasound (US) dual-modality imaging system. The beamformation can be implemented using either delay-and-sum beamforming (DAS-BF) or adaptive beamforming methods, each with their own advantages and disadvantages for the dual-modality imaging. However, the DSC is always problematic because it causes blurring the fine details of an image, e.g., edges. This paper demonstrates that the pixel based focusing method is suitable for the dual-modality imaging; beamformation is directly conducted on each display pixel and thus DSC is not necessary. As a result, the artifacts by DSC are no longer a problem, so that the proposed method is capable of providing the maximum spatial resolution achievable by DAS-BF. The performance of the proposed method was evaluated through simulation and ex vivo experiments with a microcalcification-contained breast specimen, and the results were compared with those from DAS-BF and adaptive beamforming methods with DSC. The comparison demonstrated that the proposed method effectively overcomes the disadvantages of each beamforming method.  相似文献   

12.

Background

Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness.

Objective and method

Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness.

Results

An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%.

Conclusion

Images obtained here demonstrate that CWUR may be used as a powerful non-contact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%.  相似文献   

13.
第二讲合成孔径声纳成像及其研究进展   总被引:1,自引:0,他引:1  
张春华  刘纪元 《物理》2006,35(5):408-413
文章在介绍了图像声纳的特点、合成孔径声纳(synthetic aperture sonar,SAS)产生背景和发展过程的基础上,对合成孔径声纳的原理、技术难点、成像算法等问题进行了讨论.着重分析了合成孔径声纳成像过程中高分辨率的获取方法、水声信道对成像的影响、多子阵技术及其成像算法、稳定的声纳运动平台和运动监测问题、运动补偿与自聚焦方法等.文章还给出了国内外合成孔径声纳研究的最新进展情况,进而展望了合成孔径声纳的应用前景.  相似文献   

14.
Xiang Pan  Wen Xu  Jianlong Li  Xianyi Gong   《Applied Acoustics》2009,70(11-12):1406-1411
To enhance detection of small targets, the combination of time reversal processing (TRP) and synthetic aperture beamforming (SABF) is investigated. With the spatial–temporal focusing, the potential application of TRP for active detection has been demonstrated [Kim S, Kuperman WA, Hodgkiss WS. Echo-to reverberation enhancement using a time reversal mirror. J Acoust Soc Am 2004;115(4):1525–31]. When a physical probe source (PS) replaced by a modeled source (MS), the “potential” is turned into being more practical. Similar to matched field processing, the robustness of TRP with MS needs to be considered. Meanwhile by the improvement of the extended towed array measurement (ETAM) algorithm of passive SABF, a segmented ETAM algorithm is discussed for its use in active sonar. With the echo-signal enhancement by time reversal transmission, the echo-to-reverberation ratio is further improved by SABF. Finally a matched filter is used to detect the target and the range of the target is estimated by the time delay referenced to the transmission time. The results of the waveguide tank experiment demonstrate that the TRP–SABF method can effectively detect and locate a bottom cylinder shell of 0.51 m long and 0.21 m in diameter.  相似文献   

15.
大孔径静态干涉成像光谱技术是一种时空联合调制的傅里叶变换成像光谱技术,其核心元件通常采用Sagnac横向剪切干涉仪。这种结构会使进入干涉仪的光线有一半沿原路返回,降低了能量利用率。文章提出一种改进型Mach-Zehnder横向剪切干涉仪结构,克服了能量利用率低的缺点,在实现横向剪切的同时,还具有双通道输出的优点。本文通过光线追迹的方法,得到剪切量的一般表达式,并分析了各种误差源对剪切量误差的贡献。为大孔径静态干涉成像光谱仪的设计提供了新思路,可为该类型的成像光谱仪的设计与优化提供理论指导。  相似文献   

16.
The lateral resolution of digital data from the planar (unfocused) pulse-echo transducers used in conventional ultrasonic inspections can be improved using the synthetic aperture focusing technique (SAFT).

For practical applications it is important to minimize the level of sidelobes (artefacts) introduced by SAFT, without significant loss of resolution. This may be achieved by the inclusion of a suitable aperture-weighting function in the SAFT algorithm, combined with a synthetic aperture size related to the width of the transducer beam-spread.

The properties of the resulting optimized SAFT algorithm are quantified using experimental data from a series of artificial flaws (slots) of different sizes.  相似文献   


17.
18.
赵宝庆 《光学学报》1992,12(1):3-66
URA编码孔径成像是X射线成像的一项新技术.它不但提高了信噪比,而且具有层析分辨能力.本文详细论述了URA编码孔径的层析成像原理,并提供了一种改善层析成像质量的叠代方法.并应用迭代方法成功地进行了计算机模拟实验.  相似文献   

19.
One of the important issues in the field of ultrasound medical imaging using contrast agents is the development of techniques able to separate the response of the contrast media from that of the biological tissues. In the literature, one can find various solutions involving the use of multiple transmitted signals and the combination of related echoes. However, the quality of these techniques may be reduced due to some undesired effects that are seldom considered, despite the fact that they are always present in real systems. These effects are the signal distortions introduced by the hardware equipment, the thermal noise in the electronic circuitry, and body motion between successive pulses. In this paper we propose a simulation tool that will allow the calculation of the backscattered echo from a population of contrast agents immersed in a biological tissue, considering all the mentioned effects. With this tool, an assessment of the comparative robustness of three well-known multi-pulse techniques has been carried out under realistic working conditions and the performance of the three techniques has been evaluated in terms of contrast-to-tissue ratio and signal-to-noise ratio. The results show that the undesired effects have a strong impact on these techniques and that there are notable differences in their robustness. Finally, some suggestions on the choice of the particular technique to be applied are provided on the basis of the specific work conditions.  相似文献   

20.
设计了菲索式合成孔径望远镜光学系统,用3个小口径子孔径合成大口径以获得等效大口径的分辨率。首先,兼顾空间频率u-v覆盖和结构简单化,选择子孔径排列方式为Golay-3阵列,填充因子F=0.44。然后,依据光学系统结构特性,将光学系统分成子孔径、光束控制器和光束组合器,分别进行光学设计。无焦式子孔径采用后接双胶合消色差透镜的卡塞格林结构,孔径为300 mm,视场为0.2°,角放大率为10。光束组合器为五片式结构,采用高折射率玻璃和特殊部分色散玻璃,焦距为600 mm,F/#=6,视场为2°。分析总系统点扩散函数和调制传递函数显示:总系统等效口径为子孔径口径的1.89倍,总系统角分辨率为0.24″。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号