首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grüneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V0 and pressure, the elastic constants underhigh pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature T are obtained systematically in the ranges of 0-870 GPa and 0-1600 K.  相似文献   

2.
<正>The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory(DFT).The generalized gradient approximation(GGA) with the Perdew-Burke-Ernzerhof(PBE) method is used to describe the exchange-correlation energy in the present work.The calculated equilibrium lattice constant a0,bulk modulus B0,and the pressure derivative of bulk modulus B0’ of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data.The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained.Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail.It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model,in which the phononic effect is considered,the relations of(V-V0)/V0 to the temperature and the pressure,and the relations of the heat capacity CV and the thermal expansion coefficientαto temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K.At low temperature,CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature.We predict that the thermal expansion coefficientαof NbN is about 4.20×10-6/K at 300 K and 0 GPa.  相似文献   

3.
Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the highpressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and polycrystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.  相似文献   

4.
采用基于密度泛函理论的第一性原理赝势平面波方法, 在广义梯度近似下研究了TaB和TaB2在不同压强下的弹性常数、原子结构、电子结构以及超导性质及其对两者物理性质不同进行了比较. 计算结果表明随着压强的增加, 弹性常数和体弹模量随之增加, 而相对晶格常数a/a0, b/b0, c/c0和相对体积V/V0随压强增加而减小. 在高压下, TaB沿着a轴方向的压缩性要比b轴方向大, 而b轴方向的压缩性要比c轴方向大; TaB2是沿着c轴方向的压缩性要比a轴方向的压缩性大. 电子结构分析表明TaB2的原子态杂化程度比TaB的原子态杂化程度要高, 这与TaB2的体弹模量比TaB的体弹模量高的结果相一致. 依据Bardeen-Cooper-Schrieffer超导理论, TaB和TaB2费米能级处态密度的值随着压强的增加而降低, 说明它们的超导转变温度Tc随着压强的增加而降低.  相似文献   

5.
运用基于密度泛函理论第一性原理方法研究了MnPd从立方顺磁到四方反铁磁的相变以及其弹性性质和热力学性质等.结果表明:MnPd合金顺磁立方B2结构在施加了四方应变后,结构不稳定,会发生结构相变形成四方顺磁结构.四方顺磁相弹性稳定,然而在考虑了磁性后,反铁磁四方相比四方顺磁相能量更低,而且弹性和动力学都稳定,说明反铁磁四方相是MnPd的低温结构.从而得出MnPd合金的相变路径为两步:先发生结构相变从顺磁B2立方结构转变为顺磁四方相,再由磁性诱发相变形成反铁磁四方结构.通过准谐近似得到了摩尔比热容,德拜温度等热力学性质.  相似文献   

6.
The elastic properties of the wurtzite-type aluminum nitride (w-AlN) are investigated by ab initio plane-wave pseudopotential density functional theory method. The pressure dependences of the normalized primitive cell volume V/Vo, the elastic constants cij, the aggregate elastic modulus (B, G, E), the Poisson's ratio (v), and the Debye temperature θD are successfully obtained. From the elastic constants of the w-AlN under pressure, we find that the w-AlN should be unstable at higher pressure than 61.33 GPa.  相似文献   

7.
This paper studies the equilibrium structure parameters and the dependences of the elastic properties on pressure for rutile TiO2 by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density functional theory. The obtained equilibrium structure parameters, bulk modulus B0 and its pressure derivative B′0 are in good agreement with experiments and the theoretical results. The six independent elastic constants of rutile TiO2 under pressure are theoretically investigated for the first time. It is found that, as pressure increases, the elastic constants C11, C33, C66, C12 and C13 increase, The variation of elastic constant C44 is not obvious and the anisotropy will weaken.  相似文献   

8.
牛兴平  孙兆楼 《计算物理》2017,34(4):468-474
利用基于密度泛函理论的第一性原理平面波赝势方法结合准谐德拜模型研究NaCl结构的CaS在高压下的弹性和热力学性质.计算得到的零温零压下的晶格常数、体弹模量与实验值符合得很好.弹性常数和弹性模量随着压强的增大而增大.压强对体弹模量和热膨胀系数的影响大于温度的影响.热容随压强的升高而降低,在高温下热容接近于Dulong-Petit极限.通过求解Gibbs自由能计算得到B1结构和B2结构CaS的相变压为36.61 GPa.  相似文献   

9.
基于密度泛函理论(DFT)的第一性原理,采用Hartree-Fork(HF)方法,分别计算了Si O2的α-石英结构、金红石结构以及氯化钙结构的总能量随体积的变化关系。利用Murnaghan状态方程,通过能量和体积拟合,得到了3种结构的体变模量及其对压强的一阶导数。计算结果表明,随着压强的增加,Si O2会从α-石英结构转变为金红石结构,与实验结果和其它理论结果一致;金红石结构与氯化钙结构之间不存在相变,可以共存。此外,对具有α-石英结构的Si O2的晶格常数、电子态密度和带隙随压强的变化关系进行了计算和分析,结果表明:加压作用下,能带向高能方向移动,Si─O键缩短,电子数转移增加,带隙展宽,电荷发生重新分布。  相似文献   

10.
The study aims at the elastic, mechanical, electronic properties and hardness of Nb2AsC using first principles based on the density functional theory method within the generalised gradient approximation. The calculated lattice parameters of Nb2AsC are in good agreement with the experimental data. The five independent elastic constants are firstly calculated as a function of pressure, and our results indicate that it is mechanically stable in the applied pressure. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. The pressure dependences of the bulk modulus, shear modulus, average velocity of acoustic waves and Debye temperature of Nb2AsC are systematically investigated. The band structure and density of states are discussed, and the results show that the strong hybridisations C p–Nb d and As p–Nb d would be beneficial to the structure stability of Nb2AsC. Based on the Mulliken population analysis, the hardness of Nb2AsC is predicted.  相似文献   

11.
 运用基于密度泛函理论的平面波赝势方法(PWP),计算研究了氧化镉NaCl结构(B1结构)和CsCl结构(B2结构)在不同压力条件下的几何结构、弹性性质、电子结构和光学性质。交换关联能分别采用广义梯度近似(GGA)和局域密度近似(LDA)。通过比较计算和实验得到的晶格常数和体模量不难发现,LDA的计算结果更符合实验值。在高压的作用下,两种结构的导带能级有向高能级移动的趋势,而价带能级有向低能级移动的趋势,因此直接带隙变大。同时,对照态密度分布图及高压下能级的移动情况,分析了CdO两种结构在高压作用下的光学性质。  相似文献   

12.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.  相似文献   

13.
First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spin polarized density functional theory(DFT+U) are used to study the structural,electronic,and magnetic properties of cubic perovskite compounds RbXF_3(X = Mn,V,Co,and Fe).It is found that the calculated structural parameters,i.e.,lattice constant,bulk modulus,and its pressure derivative are in good agreement with the previous results.Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF_3.Cohesive energies and the magnetic moments of RbXF_3 have also been calculated.The calculated electronic properties show the half-metallic nature of RbCoF_3 and RbFeF_3,making these materials suitable for spintronic applications.  相似文献   

14.
常景  陈向荣  张伟  朱俊 《中国物理 B》2008,17(4):1377-1382
In this paper the elastic and thermodynamic properties of the cubic zinc-blende structure BeS at different pressures and temperatures are investigated by using \textit{ab initio} plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated results are in excellent agreement with the available experimental data and other theoretical results. It is found that the zinc-blende structure BeS should be unstable above 60GPa. The thermodynamic properties of the zinc-blende structure BeS are predicted by using the quasi-harmonic Debye model. The pressure-volume-temperature ($P-V-T$) relationship, the variations of the thermal expansion coefficient $\alpha$ and the heat capacity $C_{V}$ with pressure $P$ and temperature $T$, as well as the Gr\"{u}neisen parameter-pressure-temperature ($\gamma -P-T$) relationship are obtained systematically in the ranges of 0--90GPa and 0--2000K.  相似文献   

15.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A), the Poisson's ratio (υ), the Grüneisen parameter (γ), the Debye temperature ΘD on pressure and temperature are also successfully obtained.  相似文献   

16.
Abstract

Mechanical and electronic properties of s-triazine sheet are studied using first-principles calculations based on density functional theory. The in-plane stiffness and bulk modulus for s-triazine sheet are found to be less than that of heptazine. The reduction can be related to the nature of the covalent bonds connecting the adjacent sheets and the number of atoms per unit cell. The Poisson’s ratio of s-triazine sheet is half the value to that of graphene. Additionally, the calculated values of the two critical strains (elastic and yielding points) of s-triazine sheet are in the same order of magnitude to that for heptazine which was calculated using MD simulations in the literature. It is also demonstrated that s-triazine sheet can withstand larger tension in the plastic region. These results established a stable mechanical property for s-triazine sheet. We found a linear relationship of bandgap as a function of bi-axial tensile strain within the harmonic elastic region. The reduced steric repulsion of the lone pairs (px-, py-) causes the pz-like orbital to shift to high energy, and consequently an increase in the bandgap. We find no electronic properties modulation of the s-triazine sheet under electric field up to a peak value of 10 V/nm. Such noble properties may be useful in future nanomaterial applications.  相似文献   

17.
The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.  相似文献   

18.
The structural, electronic, and magnetic properties of VSb in zincblende, andNiAs phases, VSb (001) film surfaces and its interfaces with GaSb (001) havebeen investigated within the framework of the density functional theoryusing the FPLAPW+lo approach. The NiAs structure is more stable than the ZB phase, ZB VSb is found to a half-metallic ferromagnetic. The V-terminated surfaces retain the half-metallic character, while the half-metallicity is destroyed for Sb-terminated surfaces due to surface states, which originate from p electrons. The phase diagram obtained through the ab-initio atomisticthermodynamics shows that the formation energy of ZB VSb is about 0.1 Ryd.The half-metallicity character is also preserved at VSb/GaSb (001) interface.The conduction band minimum (CBM) of VSb in the minority spin case liesabout 0.47 eV above that of GaSb, suggesting that the majority spin can beinjected into GaSb without being flipped to the conduction bands of the minority spin.  相似文献   

19.
 运用基于密度泛函理论(DFT)的平面波赝势方法(PWP),结合局域密度近似(LDA)以及广义梯度近似(GGA),系统地研究了ZnO的纤锌矿结构(B4结构),NaCl结构(B1结构)和CsCl结构(B2结构)在不同压强下的几何结构、弹性性质和吸收光谱。详细研究了ZnO发生的两次相变(B4→B1及B1→B2相变),得到了不同近似下的相变压强,以及两次相变过程中其弹性常数随压强的变化,并分析了这种变化与相变的关系。发现在高压作用下,ZnO的吸收光谱发生蓝移。通过计算结果和实验结果的比较可以看出,LDA近似下的计算结果更加符合实验结果。  相似文献   

20.
Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号