首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
 采用电探针测试技术和分幅照相技术测定了按比例缩小的三种弹丸的着靶速度及侵彻过程,获得了弹丸着靶速度及对应的最大侵彻深度数据。通过对实验数据的分析,给出了估算弹丸着靶速度与最大侵彻深度的经验公式,计算结果与本实验和文献[2, 3, 4]的实验数据相符。  相似文献   

2.
 设计了一种串联型动能侵彻弹。对该侵彻弹在不同条件下侵彻半无限混凝土靶进行了数值模拟和系列尺寸实验研究,并对该侵彻弹对目标的毁伤机理进行了分析,计算结果与实验结果较为一致,为该结构侵彻弹侵彻硬目标的研究提供了依据。  相似文献   

3.
利用ANSYS/LSDYNA软件,弹丸采用弹塑性硬化材料模型,混凝土采用HJC材料模型,并利用以前对弹丸侵彻混凝土研究所得到的材料参数,对同截卵、尖卵两种头形且尺寸和重量都较大的弹丸侵彻混凝土的侵彻性能进行了数值模拟研究。由于弹靶尺寸特征相差较大,在现有计算条件下,给建模和分析带来了较大困难,为了能将计算规模控制在可求解的范围内,我们采用二维模型来分析研究弹丸的高速侵彻能力,采用三维模型来研究当弹丸带有—定攻角和着角时其在进入隧道段之前的行为。  相似文献   

4.
为探索新型主动式钻地原理,提出了一种分体式动能子弹的结构形式。采用有限元仿真软件AUTODYN模拟了弹丸侵彻混凝土的过程,并通过靶场实验验证了数值计算结果。另外,还利用分形几何理论方法对分体式动能子弹对混凝土靶的毁伤破碎效果进行了定量评估。结果表明:在侵彻过程中,采用分体式弹丸结构,能够有效提高对岩土类目标介质的横向作用范围。分体式动能子弹侵彻后,素混凝土靶的破碎分布近似符合统计分形规律,可以用分形维数表征其破碎效应。  相似文献   

5.
将MEPH2Y程序和LTZ-2D程序衔接在一起,应用于分析射流、射弹对混凝土靶板的侵彻问题.模拟射流对混凝土靶板的侵彻以及靶板的损伤破坏情况,计算结果与实验结果符合得较好.  相似文献   

6.
设计了高速钻地结构弹,采用35mm口径的弹道炮和100mm口径的滑膛炮,进行了0.15和1.5kg弹体在1 030~1 630m/s速度范围内侵彻钢筋混凝土靶的实验研究,对高速侵彻条件下弹体的结构响应、质量损失及生存极限速度等问题进行了探讨。结果表明:在高速侵彻混凝土过程中,弹体结构的变形破坏包括头部侵蚀/墩粗+侧壁磨蚀、弯曲/尾部破裂、破碎等形式,弹体头部侵蚀和弹体质量损失程度随撞靶初速度的增加而增加。  相似文献   

7.
 利用碳纤维复合材料壳体和金属弹头组成的复合弹体,对混凝土靶进行了高速侵彻实验,弹体分别以336、447和517 m/s的速度对强度为30 MPa、厚度为200 mm的混凝土靶进行正侵彻和30°斜侵彻。实验结果表明:碳纤维复合材料壳体具有较高的强度,在高速侵彻靶体的过程中弹体结构能够保持完整,复合材料壳体没有纤维分层和断裂产生。相对于同样结构尺寸的金属弹体(将复合材料壳体替换为密度7.8 g/cm3的金属材料),复合材料弹填充物的质量分数(18.5%)约为金属弹体的两倍,因此采用轻质高强复合材料替代高密度金属弹身,不仅可以提高弹体装填比、增加比毁伤威力,而且还具有较高的侵彻能力。  相似文献   

8.
为了研究高速弹体对钢筋混凝土靶的侵彻/贯穿效应,以100 mm口径滑膛炮作为发射平台,驱动10 kg级卵形弹体以820~1195 m/s速度撞击强度为31.0~43.6 MPa的钢筋混凝土靶,获得了弹体侵彻/贯穿钢筋混凝土靶的终点弹道实验数据,并对弹体的侵彻/贯穿深度、靶板侧面自由面效应、弹体的变形进行了详细分析。结果表明:弹体的侵彻/贯穿深度为2.2~2.8 m,部分经验公式预估的侵彻/贯穿深度与实验结果吻合较好;当靶面相对尺寸较小且弹速较高时,靶板侧面自由面效应比较明显;当弹速达到1195 m/s时,弹体开始由刚体向半流体转变。  相似文献   

9.
刚性弹对混凝土靶的侵彻和穿甲已有广泛研究。大量的经验公式(如ACE,UKAEA,NFDRC等)可为弹体侵彻及防护设计提供直接和便利的参考。但是,经验公式的缺点,如量纲依赖性、弹头形状因子经验定义以及有限的适用范围等,限制了它们的应用。本文借助动态空腔膨胀理论和量纲分析,对刚性弹侵彻混凝土靶的动力学问题开展理论研究,给出侵彻动力学中的无量纲控制参数。  相似文献   

10.
 用头部曲率半径为4.0、直径100 mm、质量为25 kg的卵形弹丸对混凝土进行侵彻实验,并测试了炮膛内和侵彻过程中弹丸的加速度时程曲线。实验用混凝土靶的抗压强度为35 MPa,密度为2 450 kg/m3,有3 m×3 m×3 m和2 m×2 m×2 m两种尺寸。测试弹丸发射和侵彻过程加速度的记录系统刚性固结于弹丸内部。弹丸侵彻初速在310 m/s至632 m/s之间,弹丸的峰值过载在12 000 g到22 000 g之间。实验后将测试的侵彻深度、侵彻过程弹丸的加速度时程曲线与用Forrestal 的理论模型计算得到的结果进行了比较分析。实验结果对认识侵彻的整个过程和相关弹药的设计有重大意义。  相似文献   

11.
弹丸对钢筋混凝土中钢筋交汇处侵彻效应研究   总被引:2,自引:0,他引:2       下载免费PDF全文
考虑弹丸在钢筋交汇处与钢筋直接发生作用的情况,提出了弹丸侵彻钢筋混凝土的近似模型。利用该模型得到了弹丸侵彻钢筋混凝土过程中弹丸的加速度时间历程。计算结果与实验结果符合较好。用该模型分析了不同配筋结构、配筋尺寸和网眼尺寸对侵彻深度和侵彻过程的影响,结果表明:弹丸从钢筋交汇处侵彻时,当弹丸动能相对较小时,随着网眼尺寸的减小,弹丸的大部分能量均消耗在侵彻第一层配筋结构中,当弹丸动能较大时,不管网眼尺寸多大,第一层配筋均只消耗掉弹丸的部分能量;配筋直径和网眼尺寸对侵彻深度的影响较大。  相似文献   

12.
 理论分析高速杆式射流侵彻半无限靶过程时,考虑速度梯度对聚能射流的影响,将射流进行分段计算,得到了射流拉伸后实际碰靶时的微元长度和直径变化。采用伯努利方程和静力学方法,通过对射流形状和速度分布作线性近似,理论分析了高速杆式射流侵彻半无限靶的过程,得到了靶体中的侵彻深度和侵彻孔径与射流长度、速度及直径之间的关系。将模拟结果与实验结果进行对比,结果表明理论分析结果与侵彻实验结果符合较好。  相似文献   

13.
超空泡射弹侵彻问题的实质是特殊水下结构受到高速冲击载荷作用下的动态响应。对12.7 mm口径超空泡射弹侵彻典型水下目标壳体的毁伤效果开展研究,基于LS-DYNA有限元分析软件建立水环境中超空泡射弹垂直侵彻曲面靶板的等效模型,探讨射弹侵彻过程中动能侵彻和气泡溃灭对靶板联合毁伤效果,获得了靶板在各阶段的应力变化和结构变形规律。结果表明:侵彻靶板前,射弹着靶速度为200 m/s时的头部表面水介质压力峰值达768 N,靶板表面有明显下凹变形;侵彻靶板时,伴随着射弹动能侵彻和气泡溃灭冲击,水介质造成的影响不足动能侵彻的2%;侵彻靶板后,在靶板正面形成峰值速度为42 m/s的水射流进一步作用于破口;靶板整体弯曲变形,在200~300 m/s范围内,随着射弹着靶速度的增加,靶板弯曲形变量减小;靶板局部发生延性穿孔,射弹在水环境中具有更好的破口效果,射弹速度变化对破口尺寸影响不大。  相似文献   

14.
应用AUTODYN-2D有限差分程序,对着速在0.6~2 km/s范围之间,不同材料、不同质量和不同长径比的长杆弹侵彻混凝土靶进行了仿真计算。分析了着速对侵彻深度和混凝土靶穿孔直径的影响。结果表明:混凝土靶穿孔直径随着速的增加而增大,但侵彻深度存在拐点。进一步研究了长杆弹材料、质量和长径比对侵彻深度拐点效应的影响,长杆弹材料对侵彻深度拐点的影响较大,长杆弹的质量和长径比对拐点的影响较小。  相似文献   

15.
 采用ANSYS-AUTODYN数值模拟软件针对撞击速度在1 500~3 500 m/s内的平头分段杆侵彻效应进行研究,分析分段杆的侵彻效率和弹坑形状与分段杆的连接结构、间隔和撞击速度等参数的关系。结果表明,在一定的条件下,分段杆的侵彻效率比连续杆更优越。通过对公开报道的实验工况进行数值模拟,验证了数值模拟结果的有效性,对分段杆的侵彻机理研究及工程结构设计具有指导意义。  相似文献   

16.
基于SPH方法的弹丸侵彻仿真分析   总被引:1,自引:0,他引:1  
借助于SPH数值仿真算法,对弹丸侵彻钢板问题进行了专门研究。研究中采用SPH算法和有限元算法对比分析的方式,对两种不同速度条件下的侵彻问题做了仿真分析。分析完成后从物理现象和时程曲线角度对不同条件下的结果做了对比分析,发现:两种算法都能够用来分析侵彻问题,并且在对速度分析上的结果及其变化规律具有一致性;但是,SPH算法比有限元方法更能真实的反映侵彻过程中物料飞溅的物理现象,其中伴随冲击速度的增大,物料飞溅程度和薄板变形增大。  相似文献   

17.
 采用HJC混凝土损伤本构模型及LS-DYNA的流固耦合算法,分别对钢筋混凝土靶板在弹丸冲击和爆炸载荷作用下的响应进行了有限元数值模拟,其中模拟参数由实验数据拟合重新获取。将模拟结果与实验结果和经验公式进行对比分析,结果表明:数值模拟再现了弹体贯穿靶板过程中的开坑、隧道及漏斗碎裂区,计算得到的弹体弹道极限及残余速度与实验数据吻合较好;此外,数值模拟也很好地再现了炸药爆炸后冲击波的传播过程以及爆炸载荷作用下混凝土的破坏情况,模拟结果与实验现象具有良好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号