首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The luminescence spectra of cis-[Ru(bpy)2(L)Cl]+ (bpy is 2,2′-bipyridyl; L is pyrazine, pyridine, 4-amino-pyridine, 4-picolin, isonicotinamide, 4-cyanopyridine, or 4,4′bipyridyl) complexes are studied in alcoholic (4: 1 EtOH-MeOH) solutions at 77 K. A linear correlation is found between the energy of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state d π(Ru) → π* (bpy) and the parameter pK a of the free 4-substituted pyridines and pyrazine used as ligands L. The [B3LYP/6-31G + LanL2DZ(Ru)] hybrid method of the density functional theory is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of the ruthenium ion. It is shown that there exists a linear unambiguous correlation between the negative charge on the nitrogen atom (qN L) of ligands L coordinated in the complex and the parameters pK a of free ligands. The calculated energies of 3MLCT excited states almost linearly (correlation coefficient 0.958) depend on the charge qN L, which completely agrees with experimental data.  相似文献   

2.
The absorption spectra at room temperature and the spectra, the quantum yields, and the decay times of the luminescence at 77 K of binuclear complexes [X(bpy)2Ru(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridyl; X = Cl, BL = pyrazine, 4,4′-bipyridyl, trans-1,2-bis(4-pyridyl)ethylene, and trans-1,2-bis(4-pyridyl)ethane and X = NO2, BL = 4,4′-bipyridyl) in alcoholic (4: 1 EtOH-MeOH) solutions are studied. It is shown that the interaction between the metal centers (MCs) of the complexes affects the characteristics of the electronically excited states (EESs) of each of them and facilitates increasing the transition dipole moment Ru(dπ)→BL(π*). The deactivation rate constants of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state of the complexes are determined. In an asymmetric binuclear complex, the energy transfer from MC(NO2) to MC(Cl) is revealed, with the rate constant of this transfer being not smaller than 3.2 × 1010 s?1.  相似文献   

3.
The luminescence, absorption, and luminescence excitation spectra of complexes cis-[Ru(bpy)2(L)(NO2)]+ [bpy = 2,2′-bipyridyl, L = pyridine, 4-aminopyridine, 4-dimethylaminopyridine, 4-picoline, isonicotinamide, or 4,4′-bipyridyl] in alcoholic (4 : 1 EtOH–MeOH) solutions are studied at 77 K. A linear correlation is established between the energy of the lowest electronically excited metal-toligand charge transfer state dπ(Ru) → π*(bpy) of the complexes and the pKa parameter of the free 4-substituted pyridines used as ligands L. The B3LYP/[6-31G(d)+LanL2DZ(Ru)] hybrid density functional method is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of ruthenium(II) ions. It is shown that there exists a mutually unambiguous correspondence between the charge on the nitrogen atom of ligands L coordinated in the complex and the pKa parameter of ligands. The calculated energies of the electronically excited metal-to-ligand charge transfer states of complexes linearly (correlation coefficient 0.99) depend on the charge on the nitrogen atom of ligands L, which completely agrees with the experimental data.  相似文献   

4.
We studied the spectral-luminescent characteristics of the luminescence of mixed-ligand polypyridine-phosphine complexes of ruthenium(II) cis-[Ru(bpy)2(PPh3)X](BF4) n with ligands 2,2′-bipyridyl (bpy) and triphenylphosphine (PPh3) and X = Cl, Br, CN, NO2, NH3, MeCN, pyridine (py), 4-aminopyridine (pyNH2), and 4,4′-bipyridyl (4,4′-bpy) in a 4: 1 EtOH-MeOH alcoholic mixture at 77 K. The radiative and nonradiative deactivation rate constants of the lowest electronically excited state of the complexes are determined. We find that triphenylphosphine has a greater effect on the photophysical characteristics of ruthenium(II) complexes compared to π-acceptor strong-field ligands, such as MeCN, CN, and NO2. At the same time, the characteristics of complexes cis-[Ru(bpy)2(PPh3)X] n+ considerably depend on the nature of the second monodentate ligand X, which is coordinated to ruthenium(II), and correlate with its position in the spectrochemical series of ligands.  相似文献   

5.
6.
Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2′-bipyridine; and (N^O) is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.  相似文献   

7.
Luminescence of the ruthenium(II) complexes cis-Ru(bpy)2(CN)2 (I), cis-[Ru(bpy)2(PPh3)CN](BF4) (II), and cis-Ru(bpy)(dppe)(CN)2 (III)[bpy=2.2′-bipyridyl, PPh3=triphenylphosphine, dppe=1,2-bis(diphenylphosphino)ethane], adsorbed on silicon oxide (Aerosil) were studied at a temperature of 77 K. The luminescence spectra, decay times, and quantum yields were measured, and the intermolecular rate constants of radiative transitions and nonradiative decay of the excited electronic state with the metal-to-ligand charge transfer (MLCT) were determined. It is found that the adsorption of the complex is accompanied by a decrease in the energy of the radiative MLCT state and by a considerable acceleration of its nonradiative decay. It is concluded that the interaction of the complexes with the surface adsorption centers occurs via formation of a strong hydrogen bond with a hydroxyl-hydrate cover, the interaction of complexes in the 3MLCT state being stronger than in the ground state. The additive (in the number of phosphorus atoms coordinated to the central ruthenium ion), a shift of the absorption and luminescence bands to shorter wavelengths in the sequence of complexes I–III, is retained when the complexes transform from solutions to the absorbed state.  相似文献   

8.
The luminescence quenching of excited Tris(2,2-bipyridine)ruthenium(II) ions by trans-[RuCl2{P(OR)3}4] complexes with different alkyl chain ligands (R=C2H5, C2H5Cl, nC4H9, iC3H7 o-tolyl and tC4H9) was investigated. None of the acceptor Ru(II) phosphite complexes were luminescent, and the rate constants of the bimolecular system were determined within the range of 1.15 and 0.28×108 M−1 s−1 for R=C2H5 and tC4H9, respectively. The results indicate a direct effect of the alkyl chains in the rate constants, showing a decrease of kq as a function of increased of the alkyl chains (R) in the ruthenium(II) tetraphosphite complexes. The greater the R group content in the phosphite ligand, the more difficult the electron transfer is.  相似文献   

9.
采用常规溶液反应蒸发法以4-巯基吡啶(简写为4-MPy)为有机配体与银、镉的硝酸盐合成了两种金属有机配合物。并利用红外、拉曼、紫外-可见光谱技术对4-MPy及合成的配位化合物进行了研究,对主要红外和拉曼谱带进行了经验归属,并进一步讨论了配体和配合物的特征吸收谱带与配合物结构间的关系。在红外光谱中,配体在1 459cm-1处的吸收峰归属为CC和CN复合振动峰,形成配合物后在两种配合物中,此吸收峰分别向高波数位移至1 464和1 464cm-1。在拉曼光谱中,两种有机配位化合物在1 004和1 008cm-1处归属为环呼吸振动峰、在1 617和1 615cm-1处归属为环伸缩振动峰、在720和720cm-1处归属为β(C—C)和ν(C—S)的复合振动峰,各自十分相似。  相似文献   

10.
X‐ray absorption fine structure spectra have been investigated at the K‐edge of copper in copper(II) salen/salophen complexes: [Cu(salen)] (1), [Cu(salen)CuCl2].H2O (2), [Cu(salophen)] (3) and [Cu(salophen) CuCl2].H2O (4), where salen2? = N,N′‐ethylenebis (salicylidenaminato); salophen2? = o‐phenylenediaminebis(salicylidenaminato). Complexes 1 and 3 are supposed to have one type of copper centers (called (Cu1)) and complexes 2 and 4 two types of copper centers (called (Cu1) and (Cu2)) having different coordination environments and geometries. A theoretical model has been generated using the available crystallographic data of complex 1 and it has been used for analysis of the extended X‐ray absorption fine structure (EXAFS) data of the four complexes to obtain the structural parameters for (Cu1) center. For this center, the obtained Cu–Cu distance (3.2 Å) verifies the binuclear nature of all the complexes. For determining the coordination geometry around (Cu2) center in 2 and 4, a theoretical model has been generated using the crystal structure of a Cu(II) complex, [Cu(C16H12N2O2Cl2)]. This theoretical model has been fitted to the EXAFS data of 2 and 4 to obtain the structural parameters for (Cu2) center. The present analysis shows that (Cu1) center has square pyramidal geometry involving 2N and 3O donor atoms, whereas (Cu2) center has distorted tetrahedral geometry with 2O and 2Cl donor atoms. The values of the chemical shifts and presence of typical Cu(II) X‐ray absorption near‐edge spectroscopy features suggest that copper is in the +2 oxidation state in all these complexes. The intensity of ls → 3d pre‐edge feature has been used to investigate the geometry and binuclear nature of the complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The results of synthesis of new Pt(II) complexes with N,N′-ethylene-bis(3-methoxysalicylideneiminate) and N,N′-2,3-dimethylbutane-2,3-diyl-bis(3-methoxysalicylideneiminate) ligands and their investigation by X-ray photoelectron spectroscopy and UV-visible absorption and emission spectroscopy are discussed. The degradation channels of excited electronic states of the complexes are determined.  相似文献   

12.
A series of Ln(III) complexes with pyridine carboxylic acid-N-oxides (L) Ln-L, and mixed ligand complexes of Ln-L plus bipyridine (bipy) or 1,10-phenanthroline (O-phen) (X) Ln-L-X have been studied. These complexes were characterized in solution using Nd(III) absorption in the spectral range of the 4I9/24G5/2 transition corresponding to the hypersensitive band, and in the solid state with the use of IR and Eu(III) luminescence spectroscopy. In solutions a series of Nd(III) complexes and mixed ligand complexes has been examined and the formation of binary LnL and LnL2 complexes and mixed ligand LnL2X complexes evidenced. Solid complexes of Eu(III) with nicotinic acid N-oxide and ternary with nicotinic acid N-oxide plus phen were studied with the use of Eu(III) luminescence lifetime measurements and IR spectroscopy, proving the formation of binary [Eu(nicN-oxide)3(H2O)2].2H2O and ternary [Eu(nicN-oxide)3phen].H2O complexes.  相似文献   

13.
Five zinc (II) complexes (1-5) with 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.  相似文献   

14.
Optics and Spectroscopy - The spectral and luminescent properties of Pt(II) and Pd(II) complexes with heterocyclic imine ligands—1-phenylpyrazolate, 2-phenylpyridinate, and...  相似文献   

15.
16.
Electronic structures of binuclear ruthenium complexes [Ru2(terpy)2(tppz)]4+ ( 1A ) and [Ru2Cl2(L)2(tppz)]2+ {L = bpy ( 2A ), phen ( 3A ), and dpphen ( 4A )} were studied by density functional theory calculations. Abbreviations of the ligands (Ls) are bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, dpphen = 4,7‐diphenyl‐1,10‐phenanthroline, terpy = 2,2′:6′,2″‐terpyridine, and tppz = tetrakis(2‐pyridyl)pyrazine. Their mononuclear reference complexes [Ru(terpy)2]2+ ( 1B ) and [RuClL(terpy)]+ {L = bpy ( 2B ), phen ( 3B ), and dpphen ( 4B )} were also examined. Geometries of these mononuclear and binuclear Ru(II) complexes were fully optimized. Their geometric parameters are in good agreement with the experimental data. The binuclear complexes were characterized by electrospray ionization mass spectrometry, UV–Vis spectroscopy, and cyclic voltammograms. Hexafluorophosphate salts of binuclear ruthenium complexes of 3A and 4A were newly prepared. The crystal structure of binuclear complex 1A (PF6)4 was also determined. Orbital interactions were analyzed to characterize the metal‐to‐ligand charge‐transfer (MLCT) states in these complexes. The Cl? ligand works to raise the orbital energy of the metal lone pair, which leads to the low MLCT state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The reaction of phenols with the excited state, *[Ru(bpy)3]2+ (E0 = 0.76 V) and *[Ru(H2dcbpy)3]2+, (dcbpy = 4,4′‐dicarboxy‐2,2′‐bipyridine) (E0 = 1.55 V vs. SCE) complexes in CH3CN has been studied by luminescence quenching technique and the quenching is dynamic. The formation of phenoxyl radical as a transient is confirmed by its characteristic absorption at 400 nm. The kq value is highly sensitive to the change of pH of the medium and ΔG0 of the reaction. Based on the treatment of kq data in terms of energetics of the reaction and pH of the medium, proton coupled electron transfer (PCET) mechanism has been proposed for the reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The mixed-ligand cyclometalated [M(Bt)(μ-Cl)]2 and [(M(N∧N))(Bt)]+ complexes (M = Pd(II), Pt(II); Bt? is the deprotonated form of 2-phenylbenzothiazole; and ( N∧N) is ethylenediamine (En) and orthophenanthroline (Phen)) are studied and described by 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and voltammetry. The one-electron reduction of complexes is attributed to the electron transfer to the π * orbitals of both diimine and cyclometalated ligands. The long-wavelength absorption bands and vibrationally structured luminescence bands are assigned to optical transitions that are localized mainly on the M(Bt) metal-complex fragment.  相似文献   

19.
Recently, it was reported that cyclometalated iridium(III) complexes of 2-((E)-2-phenyl-1-ethenyl)quinoline (PEQ) and 1-((E)-2-phenyl-1-ethenyl)isoquinoline (PEIQ) emitted saturated red light with high quantum efficiency and brightness. However, the energy difference between specific wavelengths due to the metal-to-ligand charge transfer (3MLCT) absorption and emission spectra showed rather large Stokes shifts, which originated at the predominant 3(π–π1) ligand-based emission. In this paper, it is shown that these complexes are consistent with predominant 3(π–π1) ligand-based emission. To develop the predominant 3MLCT emission of Ir complexes for a highly efficient phosphorescent complex suitable for red OLED devices, proper ligands having a highest occupied molecular orbital (HOMO) energy level similar to that of 2-phenylpyridine (ppy) ligand were designed to lead to strong mixing between π-orbitals of ligands and the 5d orbital of the centric iridium atom. In order to decrease the HOMO energy level and the lowest an occupied molecular orbital (LUMO) level simultaneously to maintain the same HOMO–LUMO energy gap, an electron accepting group such as F or CF3 was introduced. By such manipulation of ligands in Ir complexes, it was theoretically possible to change the origin of emission in Ir complex from the predominant ligand-centered 3(π–π1) excited state to the predominant 3MLCT excited state.  相似文献   

20.
The preparation and oxygen sensing properties of optical materials based on two trinuclear starburst ruthenium(II) complexes: [Ru3(bpy)6(TMMB)]6+ (1) and [Ru3(phen)6(TMMB)]6+ (2) (bpy=2,2′-bpyridine, phen=1,10-phenathroline, TMMB=1,3,5-tris[2-(2′-pyridyl)benzimidazoyl]methylbenzene) assembled in two mesoporous silicate (MS) are described in this paper. The luminescence of Ru complexes/silicate assemble materials can be quenched by molecular oxygen with good sensitivity (I0/I1>5 for 2/MS and I0/I1>3 for 1/MS), indicating that trinuclear starburst Ru(II) complexes/MS systems are sensitive to oxygen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号