首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical study of Ir(III) complexes with cyclometalated alkenylquinoline ligands
Affiliation:1. Department of Information Display Engineering, Hongik University, Seoul 121-791, Republic of Korea;2. Department of Science, Hongik University, Seoul 121-791, Republic of Korea;3. Center for Organic Materials and Information Devices, Hongik University, Seoul 121-791, Republic of Korea
Abstract:Recently, it was reported that cyclometalated iridium(III) complexes of 2-((E)-2-phenyl-1-ethenyl)quinoline (PEQ) and 1-((E)-2-phenyl-1-ethenyl)isoquinoline (PEIQ) emitted saturated red light with high quantum efficiency and brightness. However, the energy difference between specific wavelengths due to the metal-to-ligand charge transfer (3MLCT) absorption and emission spectra showed rather large Stokes shifts, which originated at the predominant 3(π–π1) ligand-based emission. In this paper, it is shown that these complexes are consistent with predominant 3(π–π1) ligand-based emission. To develop the predominant 3MLCT emission of Ir complexes for a highly efficient phosphorescent complex suitable for red OLED devices, proper ligands having a highest occupied molecular orbital (HOMO) energy level similar to that of 2-phenylpyridine (ppy) ligand were designed to lead to strong mixing between π-orbitals of ligands and the 5d orbital of the centric iridium atom. In order to decrease the HOMO energy level and the lowest an occupied molecular orbital (LUMO) level simultaneously to maintain the same HOMO–LUMO energy gap, an electron accepting group such as F or CF3 was introduced. By such manipulation of ligands in Ir complexes, it was theoretically possible to change the origin of emission in Ir complex from the predominant ligand-centered 3(π–π1) excited state to the predominant 3MLCT excited state.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号