共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
一种基于算法融合的红外目标跟踪方法 总被引:5,自引:3,他引:5
视频目标跟踪的难点在于快速、准确地在帧与帧之间匹配目标.由于红外图像目标与背景的反差低,图像的边缘模糊并且灰度级动态范围小,使红外目标跟踪难度比可见光更大.本文提出一种针对红外日标跟踪的融合算法,该方法融合直方图和不变矩的特点.首先利用目标的直方图计算简单快速的特点,由均值平移算法快速找到局部最优解,但由于该局部最优解仪为直方图匹配的最优解,缺少目标形状特征,与实际目标位置存在一定的偏差;其次,利用边缘小变矩作为修正特征修正误差,避免跟踪误差逐渐累计而最终导致跟踪失败,以提高跟踪的稳定性和精度.实验结果表明,该算法能够消除跟踪过程中的漂移现象,提高跟踪精度. 相似文献
4.
5.
为了有效表示面部特征,在局部方向模式(LDP)的基础上,提出降维局部方向模式(RDLDP)。首先,修改LDP编码模式约束以完成模式的重构,通过对LDP码进行异或运算来计算每个块的单一码;然后,将所得编码图像划分为生成直方图,连接所有区域的直方图块以形成最终描述符。最后,计算特征向量间的卡方相异性度量值,并使用最近邻分类器完成最终的人脸识别。实验采用了三个公开的标准数据库FERET、扩展YALE-B和ORL。实验结果验证了提出算法的有效性。与其他基于局部描述符的先进方法相比,提出方法在准确度和错误识别率等方面更优。 相似文献
6.
人脸识别是图像分析和理解领域中最成功的应用之一,近年来得到了迅速的发展,但是阻碍人脸识别技术应用到实际中的瓶颈之一——光照问题,一直没能得到很好的解决。局部二值模式是最近发展起来的一种理论简单但功能强大的纹理分析算法,在计算机视觉等领域表现出良好的性能。将该纹理提取算法应用到图像预处理中并并利用大规模中国人脸图像数据库CAS-PEAL-R1来检验这种方法的有效性。实验结果表明:加入LBP纹理后,该方法能较好解决光照变化问题,提高识别性能。 相似文献
7.
8.
9.
为了克服光照、表情变化等因素对人脸识别的影响,本文提出了一种自适应的Gabor图像特征抽取和权重选择的人脸识别方法.该方法首先把每幅人脸图像经过Gabor小波变换后得到的40个不同尺度和方向下的图像都看作是独立的样本,再把不同人脸中的同一尺度和方向的变换结果进行特征重组,得到40个独立地新特征矩阵.为了增强对光照、表情变化的鲁棒性,每一新特征矩阵的识别贡献被本文所提出的自适应权重方法计算得到.其次,对每一新特征矩阵采用离散余弦变化进行降维,并采用了鉴别力量分析方法来选取最有鉴别力的离散余弦变换系数作为特征向量.最后,抽取线性鉴别分析特征进行识别.大量的实验证明了本文所提方法的有效性. 相似文献
10.
一种三维数字成像系统的多视点姿态估计方法 总被引:1,自引:1,他引:1
为校准多视场深度数据,提出基于条纹投影的三维数字成像系统的多视点姿态估计方法。该方法至少在两个视点分别向被测物体投射出一组正交条纹图,利用条纹投影和相位重建技术,将相位图映射为物体的三维空间坐标。进而,利用投影仪的投射过程是摄像机成像过程的逆过程,建立投影仪的投射平面和摄像机的成像平面的对应关系,将“极线几何约束”应用到基于条纹投影的主动三维视觉的姿态估计问题,并在考虑测量数据受噪声影响的条件下,建立了求解视点姿态参量的数学模型。通过优化求解非线性方程可以获得多视点的姿态估计参量。所设计的实验及结果证明了所提出方法的有效性。 相似文献
11.
12.
针对传统基于图像分割和特征提取的手势识别算法在复杂背景下识别准确率低、灵活性差的问题,基于目标检测神经网络的手势识别算法可以有效提高复杂环境下手势识别的准确性。受嵌入式处理器体积和功耗的限制,常用的目标检测神经网络在嵌入式上的识别速度较低,不能满足实时手势识别的要求。在SSD目标检测的基础上对其进行优化,使用MobileNetv3网络实现特征提取,目标检测方面则是使用SSD-lite结构,其使用深度可分离卷积替代普通卷积,实现了轻量化MobileNetv3-SSDLite手势识别算法的设计。针对手势识别的要求,制作了包含不同手势的数据集,利用它在服务器上完成了模型的训练。为了满足嵌入式的算力限制,通过模型的量化压缩将float64的网络参数量化为int8,并压缩网络结构,提高网络在嵌入式上的推理速度,实现基于嵌入式的手势识别。实验结果表明,基于嵌入式的MobileNetv3-SSDLite手势识别算法可以达到平均准确率99.61%,且识别速度达到每秒50帧以上,满足实时手势识别的要求。 相似文献
13.
In recent years, pattern recognition and computer vision have increasingly become the focus of research. Locality preserving projection (LPP) is a very important learning method in these two fields and has been widely used. Using LPP to perform face recognition, we usually can get a high accuracy. However, the face recognition application of LPP suffers from a number of problems and the small sample size is the most famous one. Moreover, though the face image is usually a color image, LPP cannot sufficiently exploit the color and we should first convert the color image into the gray image and then apply LPP to it. Transforming the color image into the gray image will cause a serious loss of image information. In this paper, we first use the quaternion to represent the color pixel. As a result, an original training or test sample can be denoted as a quaternion vector. Then we apply LPP to the quaternion vectors to perform feature extraction for the original training and test samples. The devised quaternion-based improved LPP method is presented in detail. Experimental results show that our method can get a higher classification accuracy than other methods. 相似文献
14.
In this paper, we propose a two-phase face recognition method in frequency domain using discrete cosine transform (DCT) and discrete Fourier transform (DFT). The absolute values of DCT coefficients or DFT amplitude spectra are used to represent the face image, i.e. the transformed image. Then a two-phase face classification method is applied to the transformed images. This method is as follows: its first phase uses the Euclidean distance formula to calculate the distance between a test sample and each sample in the training sets, and then exploits the Euclidean distance of each training sample to determine K nearest neighbors for the test sample. Its second phase represents the test sample as a linear combination of the determined K nearest neighbors and uses the representation result to perform classification. In addition, we use various numbers of DCT coefficients and DFT amplitude spectra to test the effect on our algorithms. The experimental results show that our method outperforms the two-phase face recognition method based on space domain of face images. 相似文献
15.
A limited training set usually limits the performance of face recognition in practice. Even sparse representation-based methods which outperform in face recognition cannot avoid such situation. In order to effectively improve recognition accuracy of sparse representation-based methods on a limited training set, a novel virtual samples-based sparse representation (VSSR) method for face recognition is proposed in this paper. In the proposed method, virtual training samples are constructed to enrich the size and diversity of a training set and a sparse representation-based method is used to classify test samples. Extensive experiments on different face databases confirm that VSSR is robust to illumination variations and works better than many representative representation-based face recognition methods. 相似文献
16.
人与计算机的交互技术是一种新型的计算机技术,且逐渐演变为一种主流技术和计算机领域的技术热点。为了能够更好的识别手势和跟踪手势的运动轨迹,提出了基于OPENCV的手势识别系统,系统引入了OPENCV计算机视觉库,OPENCV作为优秀的计算机视觉库,为设计的实现提供了便捷的代码,利用OPENCV技术中的图像处理算法,首现通过摄像头采集数据图像,并对采集到的图像进行一系列的缩放,去噪以及锐化等处理,然后对人体手势建立肤色模型,然后经过灰度阈值化来转换成二值图像,得到手轮廓的数据图像后,采用轮廓匹配方法识别出手型。最后通过10种基本的手势模型对比验证了本系统具有一定的实时性,并且识别率可以达到95%以上。 相似文献
17.
Sparse representation is being proved to be effective for many tasks in the field of face recognition. In this paper, we will propose an efficient face recognition algorithm via sparse representation in 2D Fisherface space. We firstly transformed the 2D image into 2D Fisherface in preprocessing, and classify the testing image via sparse representation in the 2D Fisherface space. Then we extend the proposed method using some supplementary matrices to deal with random pixels corruption. For face image with contiguous occlusion, we partition each image into some blocks, and define a new rule combining sparsity and reconstruction residual to discard the occluded blocks, the final result is aggregated by voting the classification result of the valid individual block. The experimental results have shown that the proposed algorithm achieves a satisfying performance in both accuracy and robustness. 相似文献