首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蒲颜  庞磊  陈晓娟  袁婷婷  罗卫军  刘新宇 《中国物理 B》2011,20(9):97305-097305
The current voltage (IV) characteristics are greatly influenced by the dispersion effects in AlGaN/GaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.  相似文献   

2.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

3.
4.
任舰  闫大为  顾晓峰 《物理学报》2013,62(15):157202-157202
本文首先制备了与AlGaN/GaN高电子迁移率晶体管 (HEMT) 结构与特性等效的AlGaN/GaN异质结肖特基二极管, 采用步进应力测试比较了不同栅压下器件漏电流的变化情况, 然后基于电流-电压和电容-电压测试验证了退化前后漏电流的传输机理, 并使用失效分析技术光发射显微镜 (EMMI) 观测器件表面的光发射, 研究了漏电流的时间依赖退化机理. 实验结果表明: 在栅压高于某临界值后, 器件漏电流随时间开始增加, 同时伴有较大的噪声. 将极化电场引入电流与电场的依赖关系后, 器件退化前后的 log(IFT/E)与√E 都遵循良好的线性关系, 表明漏电流均由电子Frenkel-Poole (FP) 发射主导. 退化后 log(IFT/E)与√E 曲线斜率的减小, 以及利用EMMI在栅边缘直接观察到了与缺陷存在对应关系的“热点”, 证明了漏电流退化的机理是: 高电场在AlGaN层中诱发了新的缺陷, 而缺陷密度的增加导致了FP发射电流IFT的增加. 关键词: AlGaN/GaN 高电子迁移率晶体管 漏电流 退化机理  相似文献   

5.
王鑫华  赵妙  刘新宇  蒲颜  郑英奎  魏珂 《中国物理 B》2010,19(9):97302-097302
This paper deduces the expression of the Schottky contact capacitance of AlGaN/AlN/GaN high electron mobility transistors (HEMTs), which will help to understand the electron depleting process. Some material parameters related with capacitance-voltage profiling are given in the expression. Detailed analysis of the forward-biased capacitance has been carried on. The gate capacitance of undoped AlGaN/AlN/GaN HEMT will fall under forward bias. If a rising profile is obviously observed, the donor-like impurity or trap is possibly introduced in the barrier.  相似文献   

6.
This paper gives a detailed analysis of the time-dependent degradation of the threshold voltage in A1GaN/GaN high electron mobility transistors (HEMTs) submitted to off-state stress. The threshold voltage shows a positive shift in the early stress, then turns to a negative shift. The negative shift of the threshold voltage seems to have a long recovery time. A model related with the balance of electron trapping and detrapping induced by shallow donors and deep acceptors is proposed to explain this degradation mode.  相似文献   

7.
杨丽媛  郝跃  马晓华  张进成  潘才渊  马骥刚  张凯  马平 《中国物理 B》2011,20(11):117302-117302
Direct current (DC) and pulsed measurements are performed to determine the degradation mechanisms of AlGaN/GaN high electron mobility transistors (HEMTs) under high temperature. The degradation of the DC characteristics is mainly attributed to the reduction in the density and the mobility of the two-dimensional electron gas (2DEG). The pulsed measurements indicate that the trap assisted tunneling is the dominant gate leakage mechanism in the temperature range of interest. The traps in the barrier layer become active as the temperature increases, which is conducive to the electron tunneling between the gate and the channel. The enhancement of the tunneling results in the weakening of the current collapse effects, as the electrons trapped by the barrier traps can escape more easily at the higher temperature.  相似文献   

8.
AlGaN/GaN/Si HEMTs grown by molecular beam epitaxy have been investigated using spectroscopy capacitance, direct and pulse current–voltage and small-signal microwave measurements. Passivation of the HEMT devices by SiO2/SiN with NH3 and N2O pretreatments is made in order to reduce the trapping effects. As has been found from DLTS data, some of electron traps are eliminated after passivation. This has led to an improvement in the drain current. To describe the electron transport, we have developed a charge-control model by including the deep traps observed from DLTS experiments. The thermal and trapping effects have been, on the other hand, studied from a comparison between direct-current and pulsed conditions. As a result, a gate-lag and a drain-lag were revealed indicating the presence of deep lying centers in the gate-drain spacing. Finally, small-signal microwave results have shown that the radio-frequency parameters of the AlGaN/GaN/Si transistors are improved by SiO2/SiN passivation and more increasingly with N2O pretreatment.  相似文献   

9.
This paper gives a detailed analysis of the time-dependent degradation of the threshold voltage in AlGaN/GaN high electron mobility transistors(HEMTs) submitted to off-state stress. The threshold voltage shows a positive shift in the early stress, then turns to a negative shift. The negative shift of the threshold voltage seems to have a long recovery time. A model related with the balance of electron trapping and detrapping induced by shallow donors and deep acceptors is proposed to explain this degradation mode.  相似文献   

10.
AlGaN/GaN high electron mobility transistors(HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 10 15 cm 2.The dc characteristics of the devices,such as the drain saturation current and the maximum transconductance,decreased after neutron irradiation.The gate leakage currents increased obviously after neutron irradiation.However,the rf characteristics,such as the cut-off frequency and the maximum frequency,were hardly affected by neutron irradiation.The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism.It is shown in the Hall measurements and capacitance-voltage tests that the mobility and concentration of two-dimensional electron gas(2DEG) decreased after neutron irradiation.There was no evidence of the full-width at half-maximum of X-ray diffraction(XRD) rocking curve changing after irradiation,so the dislocation was not influenced by neutron irradiation.It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices.  相似文献   

11.
A high performance InAlN/GaN high electron mobility transistor(HEMT) at low voltage operation(6–10 V drain voltage) has been fabricated. An 8 nm InAlN barrier layer is adopted to generate large 2 DEG density thus to reduce sheet resistance. Highly scaled lateral dimension(1.2 μm source–drain spacing) is to reduce access resistance. Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance(Ron) of 0.9 ?·mm. Small signal measurement shows an f_T/f_(max) of 131 GHz/196 GHz. Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7% –52.7%(V_(ds)= 6–10 V) power added efficiency(PAE) associated with 1.6–2.4 W/mm output power density at 8 GHz. These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field, but also are attractive for low voltage mobile compatible rf applications.  相似文献   

12.
马晓华  焦颖  马平  贺强  马骥刚  张凯  张会龙  张进成  郝跃 《中国物理 B》2011,20(12):127305-127305
In spite of their extraordinary performance, AlGaN/GaN high electron mobility transistors (HEMTs) still lack solid reliability. Devices under accelerated DC stress tests (off-state, VDS =0 state, and on-state step-stress) are investigated to help us identify the degradation mechanisms of the AlGaN/GaN HEMTs. All our findings are consistent with the degradation mechanism based on crystallographic-defect formation due to the inverse piezoelectric effects in Ref. [1] (Joh J and del Alamo J A 2006 IEEE IDEM Tech. Digest p. 415). However, under the on-state condition, the devices are suffering from both inverse piezoelectric effects and hot electron effects, and so to improve the reliability of the devices both effects should be taken into consideration.  相似文献   

13.
张光沉  冯士维  周舟  李静婉  郭春生 《中国物理 B》2011,20(2):27202-027202
The evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper.The evaluation is based on the transient heating measurement of the AlGaN/GaN HEMT by pulsed electrical temperature sensitive parameter method.The extracted chip-level and package-level thermal resistances of the packaged multi-finger AlGaN/GaN HEMT with 400-μm SiC substrate are 22.5 K/W and 7.2 K/W respectively,which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged AlGaN/GaN HEMTs.It is also experimentally proved that the extraction of the chiplevel thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.  相似文献   

14.
任凡  郝智彪  王磊  汪莱  李洪涛  罗毅 《中国物理 B》2010,19(1):17306-017306
SiN_x is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN_x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiN_x films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

15.
针对传统单结GaN基高电子迁移率晶体管器件性能受电流崩塌效应和自加热效应限制的困境,对新型A1GaN/GaN/InGaN/GaN双异质结高电子迁移率晶体管的直流性质展开了系统研究.采用基于热电子效应和自加热效应的流体动力模型,研究了器件在不同偏压下电流崩塌和负微分电导效应与GaN沟道层厚度的相关.研究发现具有高势垒双异质的沟道层能更好地将电子限制在沟道中,显著减小高电场下热电子从沟道层向GaN缓冲层的穿透能力.提高GaN沟道层厚度可以有效抑制电流崩塌和和负微分输出电导,进而提高器件在高场作用下的性能.所得结果为进一步优化双异质结高电子迁移率晶体管结构提供了新思路,可促进新型GaN高电子迁移率晶体管器件在高功率、高频和高温等无线通讯领域内的广泛应用.  相似文献   

16.
A non-recessed-gate quasi-E-mode double heterojunction A1GaN/GaN high electron mobility transistor (quasi-E- DHEMT) with a thin barrier, high breakdown voltage and good performance of drain induced barrier lowering (DIBL) was presented. Due to the metal organic chemical vapor deposition (MOCVD) grown 9-nm undoped A1GaN barrier, the effect that the gate metal depleted the two-dimensiomal electron gas (2DEG) was greatly impressed. Therefore, the density of carriers in the channel was nearly zero. Hence, the threshold voltage was above 0 V. Quasi-E-DHEMT with 4.1%tm source-to-drain distance, 2.6-μm gate-to-drain distance, and 0.5-μm gate length showed a drain current of 260 mA/mm. The threshold voltage of this device was 0.165 V when the drain voltage was 10 V and the DIBL was 5.26 mV/V. The quasi-E-DHEMT drain leakage current at a drain voltage of 146 V and a gate voltage of -6 V was below 1 mA/mm. This indicated that the hard breakdown voltage was more than 146 V.  相似文献   

17.
宓珉瀚  张凯  陈兴  赵胜雷  王冲  张进成  马晓华  郝跃 《中国物理 B》2014,23(7):77304-077304
A non-recessed-gate quasi-E-mode double heterojunction AlGaN/GaN high electron mobility transistor(quasi-EDHEMT) with a thin barrier, high breakdown voltage and good performance of drain induced barrier lowering(DIBL)was presented. Due to the metal organic chemical vapor deposition(MOCVD) grown 9-nm undoped AlGaN barrier, the effect that the gate metal depleted the two-dimensiomal electron gas(2DEG) was greatly impressed. Therefore, the density of carriers in the channel was nearly zero. Hence, the threshold voltage was above 0 V. Quasi-E-DHEMT with 4.1-μm source-to-drain distance, 2.6-μm gate-to-drain distance, and 0.5-μm gate length showed a drain current of 260 mA/mm.The threshold voltage of this device was 0.165 V when the drain voltage was 10 V and the DIBL was 5.26 mV/V. The quasi-E-DHEMT drain leakage current at a drain voltage of 146 V and a gate voltage of-6 V was below 1 mA/mm. This indicated that the hard breakdown voltage was more than 146 V.  相似文献   

18.
石磊  冯士维  郭春生  朱慧  万宁 《中国物理 B》2013,22(2):27201-027201
Direct current (DC) reverse step voltage stress is applied on the gate of AlGaN/GaN high-electron mobility transistor (HEMT). Experiments show that parameters degenerate under stress. Large-signal parasitic source/drain resistance (RS/RD) and gate-source forward I-V characteristics are recoverable after breakdown of the device under test (DUT). Electrons trapped by both the AlGaN barrier trap and the surface state under stress lead to this phenomenon, and surface state recovery is the major reason for the recovery of device parameters.  相似文献   

19.
刘宇安  庄奕琪  马晓华  杜鸣  包军林  李聪 《中国物理 B》2014,23(2):20701-020701
In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AIGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuation in a two- dimensional electron gas (2DEG) channel of AlGaN/GaN HEMT, a unified drain current 1/f noise model containing a piezoelectric polarization effect and hot carrier effect is built. The drain current 1/f noise induced by the piezoelectric polarization effect is distinguished from that induced by the hot carrier effect through experiments and simulations. The simulation results are in good agreement with the experimental results. Experiments show that after hot carrier injection, the drain current 1/f noise increases four orders of magnitude and the electrical parameter degradation Agm/gm reaches 54.9%. The drain current 1/f noise degradation induced by the piezoelectric effect reaches one order of magnitude; the electrical parameter degradation Agm/gm is 11.8%. This indicates that drain current 1/f noise of the GaN-based HEMT device is sensitive to the hot carrier effect and piezoelectric effect. This study provides a useful reliability characterization tool for the A1GaN/GaN HEMTs.  相似文献   

20.
Zheng-Zhao Lin 《中国物理 B》2022,31(3):36103-036103
AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with heavy ions at various fluences. After irradiation by 2.1 GeV181 Ta32+ ions, the electrical characteristics of the devices significantly decreased. The threshold voltage shifted positively by approximately 25% and the saturation currents decreased by approximately 14%. Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites, which increased the gate current tunneling probability. According to the pulsed output characteristics, the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation. The time constants of the induced surface traps were mainly less than 10 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号