共查询到20条相似文献,搜索用时 0 毫秒
1.
A low on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) n-channel lateral double-diffused metal-oxide-semiconductor(LDMOS) is proposed and its mechanism is investigated by simulation.The LDMOS has two features:the integration of a planar gate and an extended trench gate(double gates(DGs));and a buried P-layer in the N-drift region,which forms a triple reduced surface field(RESURF)(TR) structure.The triple RESURF not only modulates the electric field distribution,but also increases N-drift doping,resulting in a reduced specific on-resistance(Ron,sp) and an improved breakdown voltage(BV) in the off-state.The DGs form dual conduction channels and,moreover,the extended trench gate widens the vertical conduction area,both of which further reduce the Ron,sp.The BV and Ron,sp are 328 V and 8.8 m.cm2,respectively,for a DG TR metal-oxide-semiconductor field-effect transistor(MOSFET) by simulation.Compared with a conventional SOI LDMOS,a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%.The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit,thereby saving the chip area and simplifying the fabrication processes. 相似文献
2.
A high voltage silicon-on-insulator lateral insulated gate bipolar transistor with a reduced cell-pitch 下载免费PDF全文
A high voltage( 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two oxide trenches in the drift region and a trench gate extended to the buried oxide(BOX).Firstly,the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si.Secondly,oxide trenches bring in multi-directional depletion,leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field(RESURF) effect.Both increase the breakdown voltage(BV).Thirdly,oxide trenches fold the drift region around the oxide trenches,leading to a reduced cell-pitch.Finally,the oxide trenches enhance the conductivity modulation,resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop(Von).The oxide trenches cause a low anode-cathode capacitance,which increases the switching speed and reduces the turn-off energy loss(Eoff).The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm,a Von of 1.03 V at 100 A/cm-2,a turn-off time of 250 ns and Eoff of 4.1×10?3 mJ.The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits,simplifying the fabrication processes. 相似文献
3.
A low specific on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is proposed and investigated by simulation.The MOSFET features a recessed drain as well as dual gates,which consist of a planar gate and a trench gate extended to the buried oxide layer(BOX)(DGRD MOSFET).First,the dual gates form dual conduction channels,and the extended trench gate also acts as a field plate to improve the electric field distribution.Second,the combination of the trench gate and the recessed drain widens the vertical conduction area and shortens the current path.Third,the P-type top layer not only enhances the drift doping concentration but also modulates the surface electric field distributions.All of these sharply reduce Ron,sp and maintain a high breakdown voltage(BV).The BV of 233 V and Ron,sp of 4.151 mΩ·cm2(VGS = 15 V) are obtained for the DGRD MOSFET with 15-μm half-cell pitch.Compared with the trench gate SOI MOSFET and the conventional MOSFET,Ron,sp of the DGRD MOSFET decreases by 36% and 33% with the same BV,respectively.The trench gate extended to the BOX synchronously acts as a dielectric isolation trench,simplifying the fabrication processes. 相似文献
4.
A low specific on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) metal-oxide semiconductor field-effect transistor (MOSFET) is proposed and investigated by simulation. The MOSFET features a recessed drain as well as dual gates which consist of a planar gate and a trench gate extended to the buried oxide layer (BOX) (DGRD MOSFET). First, the dual gates form dual conduction channels, and the extended trench gate also acts as a field plate to improve the electric field distribution. Second, the combination of the trench gate and the recessed drain widens the vertical conduction area and shortens the current path. Third, the P-type top layer not only enhances the drift doping concentration but also modulates the surface electric field distributions. All of these sharply reduce Ron,sp and maintain a high breakdown voltage (BV). The BV of 233 V and Ron,sp of 4.151 mΩ·cm2 (VGS=15 V) are obtained for the DGRD MOSFET with 15-μm half-cell pitch. Compared with the trench gate SOI MOSFET and the conventional MOSFET, Ron,sp of the DGRD MOSFET decreases by 36% and 33% with the same BV, respectively. The trench gate extended to the BOX synchronously acts as a dielectric isolation trench, simplifying the fabrication processes. 相似文献
5.
Ultra-low specific on-resistance vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench 下载免费PDF全文
An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a high-k(HK) trench below the trench gate.Firstly,the extended HK trench not only causes an assistant depletion of the n-drift region,but also optimizes the electric field,which therefore reduces Ron,sp and increases the breakdown voltage(BV).Secondly,the extended HK trench weakens the sensitivity of BV to the n-drift doping concentration.Thirdly,compared with the superjunction(SJ) vertical double-diffused metal-oxide semiconductor(VDMOS),the new device is simplified in fabrication by etching and filling the extended trench.The HK TG VDMOS with BV = 172 V and Ron,sp = 0.85 mΩ·cm2 is obtained by simulation;its Ron,sp is reduced by 67% and 40% and its BV is increased by about 15% and 5%,in comparison with those of the conventional trench gate VDMOS(TG VDMOS) and conventional superjunction trench gate VDMOS(SJ TG CDMOS). 相似文献
6.
A novel partial silicon-on-insulator laterally double-diffused metal-oxide-semiconductor transistor (PSOI LDMOS) with a thin buried oxide layer is proposed in this paper. The key structure feature of the device is an n+-layer, which is partially buried on the bottom interface of the top silicon layer (PBNL PSOI LDMOS). The undepleted interface n+-layer leads to plenty of positive charges accumulated on the interface, which will modulate the distributions of the lateral and vertical electric fields for the device, resulting in a high breakdown voltage (BV). With the same thickness values of the top silicon layer (10 p.m) and buried oxide layer (0.375 μm), the BV of the PBNL PSOI LDMOS increases to 432 V from 285 V of the conventional PSOI LDMOS, which is improved by 51.6%. 相似文献
7.
A new silicon-on-insulator(SOI)power lateral MOSFET with a dual vertical field plate(VFP)in the oxide trench is proposed.The dual VFP modulates the distribution of the electric field in the drift region,which enhances the internal field of the drift region and increases the drift doping concentration of the drift region,resulting in remarkable improvements in breakdown voltage(BV)and specific on-resistance(Ron,sp).The mechanism of the VFP is analyzed and the characteristics of BV and Ron,spare discussed.It is shown that the BV of the proposed device increases from 389 V of the conventional device to 589 V,and the Ron,sp decreases from 366 m·cm2to 110 m·cm2. 相似文献
8.
为降低绝缘体上硅(SOI)横向双扩散金属氧化物半导体(LDMOS)器件的导通电阻,同时提高器件击穿电压,提出了一种具有纵向漏极场板的低导通电阻槽栅槽漏SOI-LDMOS器件新结构.该结构特征为采用了槽栅槽漏结构,在纵向上扩展了电流传导区域,在横向上缩短了电流传导路径,降低了器件导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,从而减弱了漏极末端的高电场,提高了器件的击穿电压.利用二维数值仿真软件MEDICI对新结构与具有相同器件尺寸的传统SOI结构、槽栅SOI结构、槽栅槽漏SOI结构进行了比较.结果表明:在保证各自最高优值的条件下,与这三种结构相比,新结构的比导通电阻分别降低了53%,23%和提高了87%,击穿电压则分别提高了4%、降低了9%、提高了45%.比较四种结构的优值,具有纵向漏极场板的槽栅槽漏SOI结构优值最高,这表明在四种结构中新结构保持了较低导通电阻,同时又具有较高的击穿电压. 相似文献
9.
A low on-resistance buried current path SOI p-channel LDMOS compatible with n-channel LDMOS 下载免费PDF全文
A novel low specific on-resistance(R on,sp) silicon-on-insulator(SOI) p-channel lateral double-diffused metal-oxide semiconductor(pLDMOS) compatible with high voltage(HV) n-channel LDMOS(nLDMOS) is proposed.The pLDMOS is built in the N-type SOI layer with a buried P-type layer acting as a current conduction path in the on-state(BP SOI pLDMOS).Its superior compatibility with the HV nLDMOS and low voltage(LV) complementary metal-oxide semiconductor(CMOS) circuitry which are formed on the N-SOI layer can be obtained.In the off-state the P-buried layer built in the NSOI layer causes multiple depletion and electric field reshaping,leading to an enhanced(reduced) surface field(RESURF) effect.The proposed BP SOI pLDMOS achieves not only an improved breakdown voltage(BV) but also a significantly reduced Ron,sp.The BV of the BP SOI pLDMOS increases to 319 V from 215 V of the conventional SOI pLDMOS at the same half cell pitch of 25 μm,and R on,sp decreases from 157 mΩ·cm2 to 55 mΩ·cm2.Compared with the PW SOI pLDMOS,the BP SOI pLDMOS also reduces the R on,sp by 34% with almost the same BV. 相似文献
10.
A new analytical model of high voltage silicon on insulator (SOI) thin film devices 总被引:2,自引:0,他引:2 下载免费PDF全文
A new analytical model of high voltage silicon on insulator (SOI)
thin film devices is proposed, and a formula of silicon critical
electric field is derived as a function of silicon film thickness by
solving a 2D Poisson equation from an effective ionization rate,
with a threshold energy taken into account for electron multiplying.
Unlike a conventional silicon critical electric field that is
constant and independent of silicon film thickness, the proposed
silicon critical electric field increases sharply with silicon film
thickness decreasing especially in the case of thin films, and can
come to 141V/μm at a film thickness of 0.1μm which is
much larger than the normal value of about 30V/μm. From the
proposed formula of silicon critical electric field, the expressions
of dielectric layer electric field and vertical breakdown voltage
(VB,V) are obtained. Based on the model, an ultra thin film
can be used to enhance dielectric layer electric field and so
increase vertical breakdown voltage for SOI devices because of its
high silicon critical electric field, and with a dielectric layer
thickness of 2μm the vertical breakdown voltages reach 852
and 300V for the silicon film thicknesses of 0.1 and 5μm,
respectively. In addition, a relation between dielectric layer
thickness and silicon film thickness is obtained, indicating a
minimum vertical breakdown voltage that should be avoided when an
SOI device is designed. 2D simulated results and some experimental
results are in good agreement with analytical results. 相似文献
11.
A low specific on-resistance SO1 LDMOS with a novel junction field plate (JFP) is proposed and investigated theo- retically. The most significant feature of the JFP LDMOS is a PP-N junction field plate instead of a metal field plate. The unique structure not only yields charge compensation between the JFP and the drift region, but also modulates the surface electric field. In addition, a trench gate extends to the buffed oxide layer (BOX) and thus widens the vertical conduction area. As a result, the breakdown voltage (BV) is improved and the specific on-resistance (Ron,sp) is decreased significantly. It is demonstrated that the BV of 306 V and the Ron,sp of 7.43 mΩ.cm2 are obtained for the JFP LDMOS. Compared with those of the conventional LDMOS with the same dimensional parameters, the BV is improved by 34.8%, and the Ron,sp is decreased by 56.6% simultaneously. The proposed JFP LDMOS exhibits significant superiority in terms of the trade-off between BV and Ron,sp. The novel JFP technique offers an alternative technique to achieve high blocking voltage and large current capacity for power devices. 相似文献
12.
为了提高小尺寸绝缘体上硅(SOI)器件的击穿电压,同时降低器件比导通电阻,提出了一种具有L型源极场板的双槽SOI高压器件新结构.该结构具有如下特征:首先,采用了槽栅结构,使电流纵向传导面积加宽,降低了器件的比导通电阻;其次,在漂移区引入了Si O2槽型介质层,该介质层的高电场使器件的击穿电压显著提高;第三,在槽型介质层中引入了L型源极场板,该场板调制了漂移区电场,使优化漂移区掺杂浓度大幅增加,降低了器件的比导通电阻.二维数值仿真结果表明:与传统SOI结构相比,在相同器件尺寸时,新结构的击穿电压提高了151%,比导通电阻降低了20%;在相同击穿电压时,比导通电阻降低了80%.与相同器件尺寸的双槽SOI结构相比,新结构保持了双槽SOI结构的高击穿电压特性,同时,比导通电阻降低了26%. 相似文献
13.
A novel voltage-withstand substrate with high-K (HK, k>3.9, k is the relative permittivity) dielectric and low specific on-resistance (Ron,sp) bulk-silicon, high-voltage LDMOS (HKLR LDMOS) is proposed in this paper. The high-K dielectric and highly doped interface N+-layer are made in bulk silicon to reduce the surface field drift region. The high-K dielectric can fully assist in depleting the drift region to increase the drift doping concentration (Nd) and reshape the electric field distribution. The highly doped N+-layer under the high-K dielectric acts as a low resistance path to reduce the Ron,sp. The new device with the high breakdown voltage (BV), the low Ron,sp, and the excellent figure of merit (FOM=BV2/Ron,sp) is obtained. The BV of HKLR LDMOS is 534 V, Ron,sp is 70.6 mΩ·cm2, and FOM is 4.039 MW·cm-2. 相似文献
14.
A novel partial silicon on insulator high voltage LDMOS with low-k dielectric buried layer 下载免费PDF全文
A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI.At a low k value the electric field strength in the dielectric buried layer (E I) is enhanced and a Si window makes the substrate share the vertical drop,resulting in a high vertical breakdown voltage;in the lateral direction,a high electric field peak is introduced at the Si window,which modulates the electric field distribution in the SOI layer;consequently,a high breakdown voltage (BV) is obtained.The values of EI and BV of LK PSOI with kI=2 on a 2 μm thick SOI layer over 1 μm thick buried layer are enhanced by 74% and 19%,respectively,compared with those of the conventional PSOI.Furthermore,the Si window also alleviates the self-heating effect. 相似文献
15.
A silicon-on-insulator (SOI) high performance lateral double-diffusion metal oxide semiconductor (LDMOS) on a compound buried layer (CBL) with a step buried oxide (SBO CBL SOI) is proposed.The step buried oxide locates holes in the top interface of the upper buried oxide (UBO) layer.Furthermore,holes with high density are collected in the interface between the polysilicon layer and the lower buried oxide (LBO) layer.Consequently,the electric fields in both the thin LBO and the thick UBO are enhanced by these holes,leading to an improved breakdown voltage.The breakdown voltage of the SBO CBL SOI LDMOS increases to 847 V from the 477 V of a conventional SOI with the same thicknesses of SOI layer and the buried oxide layer.Moreover,SBO CBL SOI can also reduce the self-heating effect. 相似文献
16.
A reduced surface electric field in an AlGaN/GaN high electron mobility transistor(HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas(2-DEG) channel as an electric field shaping layer.The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions.Compared with the HEMTs with conventional sourceconnected field plates and double field plates,the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge.By optimizing both the length of Mg-doped layer,L m,and the doping concentration,a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure,respectively.In a device with V GS = -5 V,L m = 1.5 μm,a peak Mg doping concentration of 8×10 17cm-3 and a drift region length of 10 μm,the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty. 相似文献
17.
A reduced surface electric field in AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer. The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions. Compared with the HEMTs with conventional source-connected field plate and double field plate, the HEMT with Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge. By optimizing both the length of Mg-doped layer, Lm, and the doping concentration, a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure, respectively. In a device with VGS=-5 V, Lm=1.5 μm, a peak Mg doping concentration of 8× 1017 cm-3 and a drift region length of 10 μm, the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty. 相似文献
18.
High breakdown voltage and reduced on-resistance are desired characteristics in power MOSFETs. In order to obtain an excellent performance of Trench Gate Power MOSFET, we have proposed a new structure in which a SiGe zone is incorporated in the drift region to reduce on-resistance. Also, the buried oxide is considered in the drift region that surrounds the SiGe zone to increase breakdown voltage. The proposed structure is called a SiGe Zone Trench Gate MOSFET (SZ-TG). Our simulation with two dimensional simulator shows that by reducing an electric field and controlling the effects of parasitic BJT transistor in the SZ-TG structure, we can expand power applications of trench gate power structures. 相似文献
19.
Ali A. Orouji S.E. Jamali Mahabadi P. Keshavarzi 《Superlattices and Microstructures》2011,50(5):449-460
In this paper for the first time, a partial silicon-on-insulator (PSOI) lateral double-diffused metal-oxide-semiconductor-field-effect-transistor (LDMOSFET) is proposed with a novel trench which improves breakdown voltage. The introduced trench in the partial buried oxide enhances peak of the electric field and is positioned in the drain side of the drift region to maximize breakdown voltage. We demonstrate that the electric field is modified by producing two additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the trench-partial-silicon-on-insulator (T-PSOI) structure. Hence, a more uniform electric field is obtained. Two dimensional (2D) simulations show that the breakdown voltage of T-PSOI is nearly 64% higher in comparison with partial silicon on insulator (PSOI) structure and alleviate self heating effect approximately 9% and 15% in comparison with its conventional PSOI (C-PSOI) and conventional SOI (C-SOI) counterparts respectively. In addition the current of the T-PSOI, C-PSOI, conventional SOI (C-SOI), and fully depleted conventional SOI (FC-SOI) structures are 90, 82, 74, and 44 μA, respectively for a drain–source voltage VDS = 30 V and gate–source voltage VGS = 10 V. 相似文献
20.
Low on-resistance high-voltage lateral double-diffused metal oxide semiconductor with a buried improved super-junction layer 下载免费PDF全文
A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively. 相似文献