首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of thermal annealing on self-assembled uncapped InAs/GaAs quantum dots (QDs) has been investigated using transmission electron microscopy (TEM) and photoluminescence (PL) measurements. The TEM images showed that the lateral sizes and densities of the InAs QDs were not changed significantly up to 650 °C. When the InAs/GaAs QDs were annealed at 700 °C, while the lateral size of the InAs QDs increased, their density decreased. The InAs QDs disappeared at 800 °C. PL spectra showed that the peaks corresponding to the interband transitions of the InAs QDs shifted slightly toward the high-energy side, and the PL intensity decreased with increasing annealing temperature. These results indicate that the microstructural and the optical properties of self-assembled uncapped InAs/GaAs can be modified due to postgrowth thermal annealing.  相似文献   

2.
InAs quantum dots (QDs) were grown by molecular beam epitaxy in the Stranski-Krastanow growth mode. The samples were placed between two undoped GaAs slices and annealed in nitrogen ambient at different temperature. Effect of annealing temperature on the evolution of QDs morphology is investigated by the AFM. This behavior can be attributed to the mechanisms of QDs ripening, intermixing and segregation in the annealing process. A number of QDs have evoluted into the uniform distribution quantum rings (QRs) when the sample was annealed at the temperature of 800 °C. The results indicated that high density and uniform QRs can be obtained by the post-growth technique.  相似文献   

3.
Self-assembled InAs quantum dots (QDs) on GaAs(0 0 1) substrate were grown by molecular beam epitaxy (MBE) at a growth temperature of 490 °C. Two different families of dots were observed in the atomic force microscopy (AFM) image and ambiguously identified in the photoluminescence (PL) spectra. Temperature-dependent PL study was carried out in the 8-270 K temperature range. The integrated-PL intensity behavior of the two QDs populations was fit with the help of a rate equations model. It is found that the evolutions of the integrated-PL intensity of the two QDs population were governed by two regimes. The first one occurs in the 8-210 K temperature range and reveals an unusual enhancement of the integrated-PL intensity of the larger QDs (LQDs) class. This was attributed to the carrier supplies from the smaller QDs (SQDs) class via the tunneling process. The second one occurs in the 210-270 K temperature range and shows a common quench of the PL signals of the two QDs families, reflecting the same thermal escape mechanism of carriers.  相似文献   

4.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

5.
The optical properties of self-assembled InAs quantum dots (QDs) on GaAs substrate grown by metalorganic chemical vapor deposition (MOCVD) are reported. Photoluminescence (PL) measurements prove the good optical quality of InAs QDs, which axe achieved using lower growth temperature and higher InAs coverage. At room temperature, the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1305 nm and 30 meV, respectively, which are obtained as the QDs are finally capped with 5-nm In0.06Ga0.94As strain-reducing layer (SRL). The PL spectra exhibit two emission peaks at 1305 and 1198 nm, which correspond to the ground state (GS) and the excited state (ES) of the QDs, respectively.  相似文献   

6.
Reflection high-energy electron diffraction (RHEED) and atomic force microscopy (AFM) measurements were used to investigate the dependences of the formation process and the strain on the As/In ratio and the substrate temperature of InAs quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. The thickness of the InAs wetting layer and the shape and the size of the InAs QDs were significantly affected by the As/In ratio and the substrate temperature. The strains in the InAs layer and the GaAs substrate were studied by using RHEED patterns. The magnitude in strain of the InAs QDs formed at a low substrate temperature was larger than that in InAs QDs grown at high substrate temperature. The present results can help to improve the understanding of the formation process and the strain effect in InAs QDs.  相似文献   

7.
The influence of GaAs(1 0 0) 2° substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality.  相似文献   

8.
Zhang  Y.  Wang  X.Q.  Chen  W.Y.  Bai  X.D.  Liu  C.X.  Yang  S.R.  Liu  S.Y. 《Optical and Quantum Electronics》2001,33(11):1131-1137
In this paper, room temperature PL spectra of InAs self-assembled dots grown on GaAs/InP and InP substrate are presented. For analyzing different positions of the PL peaks, we examine the strain tensor in these quantum dots (QDs) using a valence force field model, and use a five-band k·p formalism to find the electronic spectra. We find that the GaAs tensile-stained layer affects the position of room temperature PL peak. The redshift of PL peak of InAs/GaAs/InP QDs compared to that of InAs/InP QDs is explained theoretically.  相似文献   

9.
In this paper, we present a new approach to obtain large size dots in an MBE grown InAs/GaAs multilayer quantum dot system. This is achieved by adding an InAlGaAs quaternary capping layer in addition to a high growth temperature (590°C) GaAs capping layer with the view to tune the emission wavelength of these QDs towards the 1.3 μm/0.95 eV region important for communication devices. Strain driven migration of In atoms from InAlGaAs alloy to the InAs QDs effectively increases the size of QDs. Microscopic investigations were carried out to study the dot size and morphology in the different layers of the grown samples. Methods to reduce structural defects like threading dislocations in multilayer quantum dot samples are also studied.  相似文献   

10.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

11.
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to −4 Å/°C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength.  相似文献   

12.
Effects of growth conditions on the formation of InAs quantum dots (QDs) grown on GaAs (1 1 5)A substrate were investigated by using the reflection high-energy electron diffraction (RHEED) and photoluminescence spectroscopy (PL). An anomalous evolution of wetting layer was observed when increasing the As/In flux ratio. This is attributed to a change in the surface reconstruction. PL measurements show that QDs emission was strongly affected by the InAs deposited amount. No obvious signature of PL emission QDs appears for sample with 2.2 ML InAs coverage. Furthermore, carrier tunneling from the dots to the non-radiative centers via the inclination continuum band is found to be the dominant mechanism for the InAs amount deposition up to 4.2 MLs.  相似文献   

13.
An InAs ring structure accompanying the formation of quantum dots (QDs) was fabricated on (1 0 0)GaAs using droplet epitaxy. The QDs were located in the vicinity of the ring, due to the diffusion of In atoms from the In droplets. In addition, the dots were found to have distributed elliptically and preferentially along the [0 1 1] direction, implying that In itself prefers to diffuse along the [0 1 1] direction, which is the opposite of the favorable diffusion orientation of group III atoms on (1 0 0)GaAs under a commonly used As-stabilized growth condition. This is the first observation of a ring structure accompanying the formation of quantum dots in droplet epitaxy.  相似文献   

14.
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.  相似文献   

15.
The photoluminescence (PL), its temperature dependence and X ray diffraction (XRD) have been studied in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs), obtained with the variation of QD growth temperatures (470–535 °C). The increase of QD growth temperatures is accompanied by the enlargement of QD lateral sizes (from 12 up to 28 nm) and by the shift non monotonously of PL peak positions. The fitting procedure has been applied for the analysis of the temperature dependence of PL peaks. The obtained fitting parameters testify that in studied QD structures the process of In/Ga interdiffusion between QDs and capping/buffer layers takes place partially. However this process cannot explain the difference in PL peak positions.  相似文献   

16.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

17.
We report on the optical properties of nanoscale InAs quantum dots in a Si matrix. At a growth temperature of 400°C, the deposition of 7 ML InAs leads to the formation of coherent islands with dimensions in the 2–4 nm range with a high sheet density. Samples with such InAs quantum dots show a luminescence band in the 1.3 μm region for temperatures up to 170 K. The PL shows a pronounced blue shift with increasing excitation density and decays with a time constant of 440 ns. The optical properties suggest an indirect type II transition for the InAs/Si quantum dots. The electronic structure of InAs/Si QDs is discussed in view of available band offset information.  相似文献   

18.
梁松  朱洪亮  潘教青  王圩 《中国物理》2006,15(5):1114-1119
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.  相似文献   

19.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

20.
Structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) grown at 510 °C by atomic layer molecular beam epitaxy technique are studied as a function of n repeated deposition of 1-ML-thick InAs and 1-ML-thick GaAs. Cross-sectional images reveal that the QDs are formed by single large QDs rather than closely stacked InAs QDs and their shape is trapezoidal. In the image, existence of wetting layers is not clear. In 300 K-photoluminescence (PL) spectra of InGaAs QDs (n=5), 4 peaks are resolved. Origin of each peak transition is discussed. Finally, it was found that the PL linewidths of atomic layer epitaxy (ALE) QDs were weakly sensitive to cryostat temperatures (16–300 K). This is attributed to the nature of ALE QDs; higher uniformity and weaker wetting effect compared to SK QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号