共查询到18条相似文献,搜索用时 62 毫秒
1.
一种红外与可见光图像的自动配准方法 总被引:1,自引:1,他引:0
针对红外和可见光图像配准问题,采用仿射变换实现图像的几何变换,利用Canny算子边界相关运算求出边界相关性最强时对应的仿射变换参数,从而有效地实现了对原始红外和可见光图像的自动配准。实验结果表明,该算法有效,可以应用于实际的红外和可见光图像配准中。 相似文献
2.
3.
气象卫星所携带的多种传感器可以获得可见光、红外、多光谱等多模态的卫星图像,目前处理这些多模态图像的一个重要手段是数据融合分析方法,而获取不同模态图像空间对应关系的图像配准是数据融合分析的前提和基础。针对多模态气象卫星图像的配准问题,重点研究红外图像和可见光图像的配准问题,并根据红外图像和可见光图像的特点,提出了一种由粗到精的两阶段配准方法。在粗配准阶段,将Fourier-Mellin变换应用于红外和可见光图像的边缘图像上,并通过变换图像在频域的关系实现了图像配准仿射变换参数的快速计算;在精配准阶段,基于图像的Harris算子检测红外图像和可见光图像的特征点,并通过特征点局部区域的互相关函数实现特征点的匹配,最终通过匹配特征点求得精确配准的变换参数。文章提出的由粗到精的图像配准方法,有效结合了Fourier-Mellin变换对边缘图像配准的高效性和Harris算子图像配准的准确性,是红外和可见光图像配准的一种新方法。利用FY-2D气象卫星获取的红外和可见光图像进行了配准实验,实验结果表明所提出的方法具有良好的鲁棒性和较高的配准精度。 相似文献
4.
5.
为实现电力设备红外图像中目标设备图像的分割,对传统区域生长法需要人工选择初始种子点,以及易产生过分割与欠分割的不足提出了改进,将红外图像中邻域均值最大的像素点作为种子点,实现种子点的自动选取。提出了使用Sobel算子计算梯度幅值作为附加限定条件的生长准则。改进的区域生长法的分割效果比传统的区域生长法效果更好。 相似文献
6.
基于角点的红外与可见光图像自动配准方法 总被引:1,自引:2,他引:1
针对红外图像与可见光图像的自动配准问题,提出了一种基于图像角点特征以及仿射变换模型的方法.利用Harris因子分别在红外图像和可见光图像上检测角点,并对两幅图像进行边缘检测,得到其边缘图像.通过角点邻域在边缘图像上的相关性,实现角点的粗匹配;通过角点的细匹配,从匹配的角点中选择两对匹配最佳的点作为仿射变换的控制点,得到仿射变换模型,并对待配准图像进行仿射变换,从而实现图像配准.实验结果表明:该方法运算速度快,可以很好地完成红外与可见光图像的自动配准. 相似文献
7.
针对红外与可见光图像融合,提出了一种基于NSCT变换的图像融合方法。对经NSCT变换的低频子带系数采用基于区域能量自适应加权的融合规则,对高频子带系数采用混合的融合方法,即对于低层,采用基于区域方差选大的融合方法,对于高层采用像素点的绝对值选大的融合方法。实验结果表明,该融合算法可以获得更多的细节信息,能获得较理想的融合图像。 相似文献
8.
为了实现红外与可见光图像的自动配准,提出了基于似然函数最速下降迭代的图像配准算法.该算法以图像边缘作为配准点特征,将异源图像配准转化为边缘点集配准.基于点集的高斯混合模型建立了边缘点集配准似然函数,以该函数作为目标函数,仿射变换参量作为优化变量,利用最速下降方法进行最优变换参量求解,从而实现边缘点集配准.同时,将多分辨率金字塔引入迭代配准框架下,实现了高分辨率图像配准的加速.实验结果表明:该算法精度高,运算速度快,可以很好地完成可见光与红外图像的自动配准. 相似文献
9.
10.
11.
12.
13.
为准确地划分出实际内窥图像的有效检测区域,依据此类图像的具体特点提出一种综合区域生长和霍夫变换的分割算法。利用区域生长大致分割出感兴趣区域,可能会存在漏检边缘或虚假边缘,通过二值形态学处理对图像进行平滑滤波和去噪,采用Canny算子在抑制噪声的同时进行边缘检测,应用霍夫变换检测圆的算法确定图像内有效区域的位置。通过对90组实际内窥图像在Visual C++ 6.0上进行仿真,实验结果表明:有88组内窥图像能够精确地分割强光干扰且划分出有效检测区域;仅有2组图像分割出的强光干扰及划分出的有效检测区域不够准确。 相似文献
14.
15.
为克服经典区域增长算法中生长规则以及特征选取的困难,提出了基于高斯混合模型的多区域并行区域增长图像分割算法。首先交互选择多个不同区域的种子点,并利用交互式选择的属于每个区域的子块得到混合模型的个数;然后利用最大期望估计混合模型参数作为区域增长的初始参数,并在增长过程中不停地调节模型参数。为了避免初始种子点位置选择对算法性能的影响,采用了多区域并行竞争增长策略。仿真实验获得了较好的分割效果,表明所提出的算法是合理可行的。 相似文献
16.
17.
18.
提出一种利用区域信息的航拍图像分割模型。针对GAC模型和Chan-Vese模型存在的不足,提出一种符号压力函数,该符号压力函数可以有效地增大模型的作用范围。与Chan-Vese模型相比,新模型不受初始条件的限制,进一步增大了模型的作用范围。新模型利用了图像的区域信息,可以同时将目标的内外边界分割出来。在新模型中,水平集函数不必初始化为符号距离函数,节省了计算开销。与传统的基于水平集方法的模型相比,新模型不含曲率项,实现简单。实验结果表明,与GAC模型和Chan-Vese模型相比,新模型的分割精度高于3%,分割速度快6倍以上。 相似文献