首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic analysis of viscoelastic pipes conveying fluid is investigated by the variable fractional order model in this article. The nonlinear variable fractional order integral-differential equation is established by introducing the model into the governing equation. Then the Shifted Legendre Polynomials algorithm is first presented for dealing with this kind of equations. The convergence analysis and numerical example verify that the algorithm is an effective and accurate technique for addressing this type complicated equation. Numerical results for dynamic analysis of viscoelastic pipes conveying fluid show the effect of parameters on displacement, acceleration, strain and stress. It also indicates that how dynamic properties are affected by the variable fractional order and fluid velocity varying. Most of all, the proposed algorithm has enormous potentials for the problem of high precision dynamics under the variable fractional order model.  相似文献   

2.
A thick composite cylindrical shell panel with general layer stacking is studied to investigate the free edge and 3D stresses in the panel which is subjected to pure bending moment. To this aim, a Galerkin based layerwise formulation is presented to discretize the governing equation of the panel to ordinary differential equations. Employing a reduced displacement field for the cylindrical panel, the governing equations for thick panel are developed in terms of displacements and a set of coupled ordinary differential equations is obtained. The governing equations are solved analytically for free edge boundary conditions and applied pure bending moment. The accuracy of numerical results is examined and the distribution of interlaminar and in-plane stresses is studied. The free edge stresses are studied and the effect of radius to thickness ratio, width to thickness ratio and layer stacking on the distribution of stresses is investigated. The focus of numerical results is on the prediction of boundary layer and free edge stress distribution.  相似文献   

3.
In this paper, the linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams are studied based on the Gurtin–Murdoch surface stress theory. Firstly, the constitutive equations of fractional viscoelasticity theory are considered, and based on the Gurtin–Murdoch model, stress components on the surface of the nanobeam are incorporated into the axial stress tensor. Afterward, using Hamilton's principle, equations governing the two-dimensional vibrations of fractional viscoelastic nanobeams are derived. Finally, two solution procedures are utilized to describe the time responses of nanobeams. In the first method, which is fully numerical, the generalized differential quadrature and finite difference methods are used to discretize the linear part of the governing equations in spatial and time domains. In the second method, which is semi-analytical, the Galerkin approach is first used to discretize nonlinear partial differential governing equations in the spatial domain, and the obtained set of fractional-order ordinary differential equations are then solved by the predictor–corrector method. The accuracy of the results for the linear and nonlinear vibrations of fractional viscoelastic nanobeams with different boundary conditions is shown. Also, by comparing obtained results for different values of some parameters such as viscoelasticity coefficient, order of fractional derivative and parameters of surface stress model, their effects on the frequency and damping of vibrations of the fractional viscoelastic nanobeams are investigated.  相似文献   

4.
This paper presents research on the fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness. Based on the Caputo operators, the double fractional Maxwell model and generalized Fourier's law are introduced to the constitutive relationships. The governing equations are solved numerically by utilizing the finite difference method. The effects of fractional parameters on the velocity and temperature field are analyzed. The results indicate that the larger is the fractional stress parameter, the stronger is the elastic characteristic. However, fluids show viscous fluid-like behavior for a larger value of fractional strain parameter. Moreover, the numerical solutions are in good agreement with the exact solution and the convergence order can achieve the expected first order. The numerical method in this study is reliable and can be extended to other fractional boundary layer problems over a variable thickness sheet.  相似文献   

5.
本文建立了具轴对称变形、考虑横向剪切影响的浅球壳的非线性运动方程:对周边弹性支承开孔浅球壳的非线性静、动力响应及动力稳定问题进行了探讨.在解题方法上,对位移函数在空间上采用正交配点法离散.在时间上采用平均加速度法(Newmark-β法)离散.变求解一组非线性微分方程为求解一组线性代数方程.文中给出了不同情况下的若干数值结果,且与有关文献的结果作了比较.  相似文献   

6.
Nonlinear transient thermal stress and elastic wave propagation analyses are developed for hollow thick temperature-dependent FGM cylinders subjected to dynamic thermomechanical loads. Stress wave propagation, wave shape distortion, and speed variation under impulsive mechanical loads in thermal environments are also investigated. In contrast to researches accomplished so far, a second-order formulation rather than a first-order one is employed to improve the accuracy. The FDM method (as a point-collocation FEM method) is used. It is known that other FEM methods cannot show the actual trend jumps due to distributing the abrupt changes in the quantities as the numerical errors and the residuals of the governing equations among the nodal results. Furthermore, the required computational time and allocated computer memory are much reduced by the present solution algorithm. The cylinder is not divided into isotropic sub-cylinders. Therefore, artificial wave reflections from the hard interfaces are avoided. Time variations of the temperatures, displacements, and stresses due to the dynamic or impulsive loads are determined by solving the resulted highly nonlinear governing equations using an iterative updating solution scheme. A sensitivity analysis includes effects of the volume fraction indices, dimensions, and temperature-dependency of the material properties is performed. Results reveal the significant effect of the temperature-dependency of the material properties on the thermoelastic stresses and present some interesting characteristics of the thermoelastic and wave propagation behaviors.  相似文献   

7.
基于Sherief等提出的分数阶广义热弹性耦合理论,研究了在热冲击作用下二维纤维增强弹性体的热弹性问题.考虑了重力对二维纤维增强线性热弹性各向同性介质的影响,建立了控制方程.运用正则模态法,经过数值计算,对控制方程进行求解,得到了不同分数阶参数和不同重力场下无量纲温度、位移和应力分量的表达式,以图形的方式展示了变量的分布规律并对结果展开了讨论.研究结果为:重力场和分数阶参数对纤维增强介质的位移及应力有着重要的影响,但对温度的影响有限.  相似文献   

8.
A finite element approach is presented for three-dimensional thermo-viscoelastic macro analysis of polymer-matrix composite structures containing micro-level heterogeneities, a two-scale approach. Due to its ability to account for microstructural details, the asymptotic expansion homogenization approach is employed to first, obtain the homogenized properties for use in the macroscale problem, and second, to study the local micro-level stress distributions influenced by macro effects. The theoretical formulations are described and developed for a thermoviscoelastic solid whose time-dependent stress–strain relationship can be homogenized. Arising from homogenization of the constitutive equation in the time domain is a hereditary dissipative corrector term. The dissipative corrector is time-dependent and accounts for heterogeneous behavior across the junction of dissimilar materials at the microstructural level. The additional term is necessary for the governing constitutive equations to satisfy equilibrium at both length scales. The objectives of this paper are three-fold: (1) develop the micro and macro constitutive equations for a thermoviscoelastic Kelvin–Voight material; (2) develop a computational approach for the constitutive equations; and (3) demonstrate and verify illustrative applications using results from the theoretical developments in the literature wherever available for a viscoelastic homogeneous/heterogeneous material.  相似文献   

9.
In this work, a three characteristic-lengths featured size-dependent gradient-beam is constructed by adopting the modified nonlocal model, resulting in much more general constitutive equation with stress gradient up to four-order and strain gradient to two-order. The six-order differential governing equation for transverse displacement is formulated. All boundary conditions especially variational consistent higher order boundary conditions of the present model are derived with the aid of weighted residual approach. The closed-form solutions to critical buckling loads under different sets of boundary conditions are systematically formulated with higher order boundary conditions incorporated. The numerical results show that both nonlocal parameters have significant effect on the buckling behaviors. Meanwhile, if two nonlocal parameters are taken as same, the present results cannot always reduce to that from Eringen's nonlocal model. Due to its clear physical meaning, the present model is expected to be widely adopted in mechanical analyses of nano-structures.  相似文献   

10.
研究了一端固支另一端简支连续变厚度梁在静力荷载作用下的应力和位移分布.通过引入单位脉冲函数和Dirae函数,将固支边等效为简支边与未知水平反力的叠加,利用平面应力问题的基本方程,导出满足控制微分方程及左右两端边界条件的位移函数的一般解,对上下表面的边界方程作Fourier级数展开,结合固支边位移为O的条件确定待定系数,得到的解是高精度的.数值结果与商业有限元软件ANSYS进行了比较,显示出很好的精度.  相似文献   

11.
The aim of this paper is to study the transient wave propagations in a non-homogeneous anisotropic thermoviscoelastic thick strip placed in a constant primary magnetic field and subjected to a moving heat source. The governing equations for temperature and displacement fields are solved by means of a dual reciprocity boundary element method (DRBEM). In the case of plane deformation, a numerical scheme for the implementation of the method is presented and the numerical computations are carried out for the temperature, displacement components and thermal stress components. The validity of DRBEM is examined by considering a magneto-thermo-visco-elastic thick strip occupies a rectangular region and good agreement is obtained with existent results. The results obtained are presented graphically to show the effect of inhomogeneity on the displacement components and thermal stress components. Relevant results of previous investigations are deduced as special cases from this study.  相似文献   

12.
本文应用Donnell的简化假定,从弹性基上锥壳位移型微分方程组出发,通过引入一个位移函数U(s,θ)(在极限情况下就退化成V.S.Vlasov对于圆柱壳所引的位移函数[5]),将基本微分方程组化成为一个八阶可解偏微分方程.这个方程的一般解用级数形式给出.对于在实际中有广泛应用价值的Winkler弹性基上锥壳的轴对称弯曲问题,本文给出了详细的数值结果,并求出了边缘荷载作用下的影响系数,这对计算弹性基上锥壳组合结构有着重要的意义.  相似文献   

13.
England (2006) [13] proposed a novel method to study the bending of isotropic functionally graded plates subject to transverse biharmonic loads. His method is extended here to functionally graded plates with materials characterizing transverse isotropy. Using the complex variable method, the governing equations of three plate displacements appearing in the expansions of displacement field are formulated based on the three-dimensional theory of elasticity for a transverse load satisfying the biharmonic equation. The solution may be expressed in terms of four analytic functions of the complex variable, in which the unknown constants can be determined from the boundary conditions similar to that in the classical plate theory. The elasticity solutions of an FGM rectangular plate with opposite edges simply supported under 12 types of biharmonic polynomial loads are derived as appropriate sums of the general and particular solutions of the governing equations. A comparison of the present results for a uniform load with existing solutions is made and good agreement is observed. The influence of boundary conditions, material inhomogeneity, and thickness to length ratio on the plate deflection and stresses for the load x2yq are studied numerically.  相似文献   

14.
锥壳的位移解及应用*   总被引:2,自引:0,他引:2  
本文提出求锥壳方程通解的另一种方法——位移法.文中根据文献[1]给出的壳体基本关系,导出锥壳一般弯曲问题的位移方程组,然后通过引入一个位移函数U(s,θ)(在极限情况下,就变为对于圆柱壳所引入的位移函数),从而将锥壳基本方程组化成关于位移函数U(s,θ)的8阶可解偏微分方程(控制微分方程).对于一般弯曲问题,该方程的一般解以广义超几何函数给出;对于轴对称弯曲问题,用Bessel函数给出其一般解.作为锥壳位移解法的应用,讨论了Winkler地基模式上的锥壳的轴对称弯曲问题,给出数值结果.  相似文献   

15.
The effects of pulsed electromagnetic fields on the dynamic mechanical response of electrically conductive anisotropic plates are studied. The analysis is based on the simultaneous solving of the system of nonlinear partial differential equations that include equations of motion and Maxwell’s equations. Physics-based hypotheses for electro-magneto-mechanical coupling in anisotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations are presented. A numerical solution procedure for the resulting two-dimensional nonlinear system of the governing equations has been developed and consists of the sequential application of time and spatial integration and quasilinearization. The developed methodology is applied to the problem of the dynamic response of a long current-carrying unidirectional carbon fiber polymer matrix composite plate subjected to transverse impact load and in-plane pulsed electromagnetic load. The interacting effects of the pulsed electric current, external magnetic field, and mechanical load are studied.  相似文献   

16.
In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs).  相似文献   

17.
Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.  相似文献   

18.
分数积分的一种数值计算方法及其应用   总被引:5,自引:0,他引:5  
提出了一种只需要存储部分历史数据的分数积分的数值计算方法,并给出了误差估计。这种方法可对包含分数积分和分数导数的积分-微分方程进行较长时间的数值计算,克服了存储全部历史数据的困难,并能对计算误差进行控制。作为应用,给出了具有分数导数型本构关系的粘弹性Timoshenko梁的动力学行为研究的控制方程,利用分离变量法讨论梁在简谐激励作用下的动力响应,然后用新提出的数值方法对控制方程进行数值计算,数值计算结果和理论结果进行了比较,它们比较吻合。  相似文献   

19.
Based on initial nonlinear constitutive equations, we establish the extended displacement and traction boundary integral equations for a piezoelectric medium with a volume electric charge, along with electron and electric current density boundary integral equations for a conductor with a volume electric current. Then, an iterative approach is proposed for investigation of boundary value problems in two-dimensional piezoelectric semiconductors (PSCs). Compared with extended displacements obtained by finite element analysis, this approach is validated via a rectangular PSC under extended external loads. Furthermore, as a numerical example, extended displacements across an elliptical hole in a rectangular PSC are investigated. It is shown that there is a stress concentration near the elliptical hole, which is closely dependent on its shape.  相似文献   

20.
A two-dimensional analysis is presented for piezoelectric beam with variable thickness which is simply supported and grounded along its two ends. According to the governing equations of plane stress problems, the displacement solutions, which exactly satisfy the governing differential equations and the simply-supported boundary conditions at two ends of the beam, are derived. The unknown coefficients in the solution are then determined by using the Fourier sinusoidal series expansion to the boundary equations on the upper and lower surfaces of the beams. The present solutions show a good convergence and the numerical results are presented and compared with those available in the literature. The method could be applied to control engineering and other projects with highly accurate demand on stress and displacement analysis such as the design of micro-mechanical apparatuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号