共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we develop a cellular automaton model to describe the phase transition of traffic flow on urban expressway systems with on-off-ramps and accessory roads. The lane changing rules are given in detailed, the numerical results show that the main road and the accessory road both produce phase transitions. These phase transitions will often be influenced by the number of lanes, lane changing, the ramp flow, the input flow rate, and the geometry structure. 相似文献
2.
LI Ke-Ping GAO Zi-You 《理论物理通讯》2004,42(9)
One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicledensity is larger than the critical value. In this paper, a new method is presented to investigate the traffic jam when thevehicle density is smaller than the critical value. In our method, we introduce noise into the traffic system after sufficienttransient time. Under the effect of noise, the traffic jam appears, and the phase transition from tree to synchronized flowoccurs in traffic flow. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstratethat there exist a broad range of lower densities at which the noise effect leading to traffic jam can be observed. 相似文献
3.
TANG Tie-Qiao HUANG Hai-Jun S.C. Wong GAO Zi-You ZHANG Ying 《理论物理通讯》2009,51(1):71-78
In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable. 相似文献
4.
5.
Different driving decisions will cause different processes of phase transition in traffic flow.To reveal the inner mechanism, this paper built a new cellular automaton (CA) model,based on the driving decision (DD). In the DD model, a driver's decision is divided intothree stages: decision-making, action, and result. The acceleration is taken as a decisionvariable and three core factors, i.e. distance between adjacent vehicles, their own velocity,and the preceding vehicle's velocity, are considered. Simulation results show that the DDmodel can simulate the synchronized flow effectively and describe the phase transitionin traffic flow well. Further analyses illustrate that various density will cause the phasetransition and the random probability will impact the process. Compared with the traditional NaSch model, the DD model considered the preceding vehicle's velocity, the deceleration limitation, and a safe
distance, so it can depict closer to the driver preferences on pursuing safety, stability and fuel-saving and has strong theoreticalinnovation for future studies. 相似文献
6.
PENG Zi-Hui SUN Gang ZHU Jing-Yi 《理论物理通讯》2009,51(1):145-148
The system of mixture of single lane and double lane is studied by a cellular automata model, which is developed by us based on the Nagel and Schreckenberg's models. We justify that the model can reach a stable states quickly. The density distributions of the stable state is presented for several cases, which illustrate the manner of the congestion. The relationship between the outflow rate and the total number of vehicles and that between the outflow rate and the density just before the bottleneck are both given. Comparing with the relationship that occurring in the granular flow, we conclude that the transition from the free traffic flow to the congested traffic flow can also be attributed to the abrupt variation through unstable flow state, which can naturally explain the discontinuities and the complex time variation behavior observed in the traffic flow experiments. 相似文献
7.
8.
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases(P nnm, C2/m and Pm-3 m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the P nnm phase and phase transformation of InS from P nnm phase to P m-3 m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with P nnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and P m-3m phase are metallic phases. 相似文献
9.
The expressway traffic incidents have the characteristics of high harmful, strong destructive and refractory. Incident detection can guarantee smooth operation of the expressway, reduce traffic congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffic ratio at the entrances and crossway in the network. The expressway traffic simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffic network states so as to provide advice for the highway management department. 相似文献
10.
11.
采用双离子束溅射氧化钒薄膜附加热处理的方式制备了纳米二氧化钒薄膜。在热驱动方式下,分别利用四探针测试技术和傅里叶变换红外光谱技术对纳米二氧化钒薄膜的电学与光学半导体-金属相变特性进行了测试与分析。实验结果表明,电学相变特性与光学相变特性之间存在明显的偏差,电学相变温度为63 ℃,高于光学相变温度,60 ℃;电学相变持续的温度宽度较光学相变持续温度宽度宽;在红外光波段,随着波长的增加,纳米二氧化钒薄膜的光学相变温度逐渐增大,由半导体相向金属相转变的初始温度逐渐升高,相变持续的温度宽度变窄。在红外光波段,纳米二氧化钒薄膜的光学相变特性可以通过光波波长进行调控,电学相变特性更适合表征纳米VO2薄膜的半导体-金属相变特性。 相似文献
12.
利用磁驱动加载装置(CQ-4)和高精度速度测试装置(DPV),开展了斜波加载下锡的动态压缩实验。实验结果表明:锡在加载阶段经历了弹塑性转变和相变等物理过程,相变压力约为7.5 GPa。β–γ相变对应的特征速度随着锡厚度的增加,从676.3 m/s减小到636.8 m/s,对应的压力从7.62 GPa降低到7.11 GPa。结合Hayes多相状态方程和非平衡相变动力学模型,对锡的斜波压缩实验过程进行了模拟,数值计算结果可以较好地描述锡在加载阶段的弹塑性转变和相变等物理过程。讨论了体模量在不同热力学过程中的物理形式,计算结果显示,斜波压缩过程需考虑压力对体模量的修正。分析了相变弛豫时间、体模量等典型物理参数对速度波形的影响,结果表明,相变弛豫时间和各相初始自由能主要影响混合区部分速度波形,γ相的体模量参数只影响相变后的速度波形,β相的体模量参数会影响整体速度波形。 相似文献
13.
The optimal velocity model of traffc is extended to take the relative velocity into account. The traffcbehavior is investigated numerically and analytically with this model. It is shown that the car interaction with therelative velocity can effect the stability of the traffic flow and raise critical density. The jamming transition between thefreely moving and jamming phases is investigated with the linear stability analysis and nonlinear perturbation methods.The traffic jam is described by the kink solution of the modified Korteweg-de Vries equation. The theoretical result isin good agreement with the simulation. 相似文献
14.
15.
The optimal velocity model of traffic is extended to take
the relative velocity into account. The traffic behavior is investigated
numerically and analytically with this model. It is shown that the car
interaction with the relative velocity can effect the stability of the
traffic flow and raise critical density. The jamming transition between
the freely moving and jamming phases is investigated with the linear
stability analysis and nonlinear perturbation methods. The traffic jam is
described by the kink solution of the modified Korteweg--de Vries equation.
The theoretical result is in good agreement with the simulation. 相似文献
16.
HUANG De-Cai SUN Gang LU Kun-Quan 《理论物理通讯》2007,48(4):729-733
Two-dimensional granular flow in a channel with small exit is studied by molecular dyhamics simulations. We firstly define a key area near the exit, which is considered to be the choke area of the system. Then we observe the time variation of the local packing fraction and flow rate in this area for several fixed inflow rate, and find that these quantities change abruptly when the transition from dilute flow state to dense flow state happens. A relationship between the local flow rate and the local packing fraction in the key area is also given. The relationship is a continuous function under the fixed particle number condition, and has the characteristic that the flow rate has a maximum at a moderate packing fraction and the packing fraction is terminated at a high value with negative slope. By use of the relationship, the properties of the flow states under the fixed inflow rate condition are discussed in detail, and the discontinuities and the complex time variation behavior observed'in the preexisting works are naturally explained by a stochastic process. 相似文献
17.
Michael Blank 《Journal of statistical physics》2005,120(3-4):627-658
We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration,
with a collision law respecting slower particles. This simple deterministic “particle-hopping” traffic flow model being a
straightforward generalization to the well known Nagel–Schreckenberg model covers also a more recent slow-to-start model as
a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below
the lowest critical value, the steady state of the model corresponds to the “free-flowing” (or “gaseous”) phase. When the
density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond
to the “jammed” (or “liquid”) phase. Between the two critical values each of these phases may take place, which can be interpreted
as an “overcooled gas” phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished
in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.
This research has been partially supported by Russian Foundation for Fundamental Research and French Ministry of Education
grants. 相似文献
18.
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure. 相似文献
19.
In this paper,we study the motion course of traffic flow on the slopes of a highway by applying a microscopic traffic model,which takes into account the next-nearest-neighbor interaction in an intelligent transportation system environment.Three common gradients of the highway,which are sag terrain,uphill terrain,and downhill terrain on a single-lane roadway,are selected to clarify the impact on the traffic flow by the next-nearest-neighbor interaction in relative velocity.We obtain the current-density relation for traffic flow on the sag,the uphill and the downhill under the next-nearest-neighbor interaction strategy.It is observed that the current saturates when the density is greater than a critical value and the current decreases when the density is greater than another critical value.When the density falls into the intermediate range between the two critical densities it is also found that the oscillatory jam,easily leads to traffic accidents,often appears in the downhill stage,and the next-nearest-neighbor interaction in relative velocity has a strong suppressing effect on this kind of dangerous congestion.A theoretical analysis is also presented to explain this important conclusion. 相似文献