首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
植被重金属污染监测是当今高光谱遥感监测研究的重要内容。为了将高光谱遥感技术定性的用于植被重金属污染监测研究,从盆栽实验采集的反射率光谱数据方面进行研究。在实验室室内设置不同胁迫浓度的重金属铜铅玉米盆栽实验,测定了不同浓度Cu2+和Pb2+胁迫下玉米叶片的反射率光谱和Cu2+和Pb2+含量等有关铜铅污染玉米的基础数据,形成了关于重金属铜铅污染玉米植株的一套完整的数据集。研究提出了一种铜铅探测指数(CLDI),实现了不同培育期的两种玉米品种的重金属铜铅胁迫监测,从而为当前植被重金属污染探测提供了新的思路。研究设计了不同浓度的铜铅污染实验,将测量获得的玉米叶片450~850 nm的光谱反射率进行一阶微分(D)和包络线去除(CR)处理后得到微分包络线去除(DCR)光谱曲线,利用皮尔逊相关系数(r)分析DCR数据和生化数据,选择对重金属Cu敏感的特征波段。计算的皮尔逊相关系数表明DCR值在490~520和680~700 nm与土壤和叶片中的Cu2+含量呈现接近于1的线性正相关,在630~...  相似文献   

2.
目前我国土壤重金属污染日趋严重,高光谱遥感因具有光谱分辨率高、图谱合一等特点成为农作物重金属污染研究的热点。农作物受重金属污染后其光谱会发生细微的改变,如何探寻叶片光谱中对重金属污染敏感的波段是目前的一种研究方向。提出了一种新型铜胁迫植被指数(NCSVI)来探索铜胁迫下玉米光谱敏感区间。通过设计不同梯度下的玉米铜胁迫实验,测定每个铜胁迫浓度下玉米叶片的光谱和Cu2+的含量。首先,将玉米叶片光谱分为11个子区间,以每个子区间的中间波长对应的光谱反射率构建各自的NCSVI。然后,计算NCSVI与玉米叶片中Cu2+含量的相关性系数R及均方根误差RMSE,结合水波段指数(WBI)、改进的叶绿素吸收率指数(MCARI)和归一化水指数(NDWI)这三种常规植被指数进行对比。最后,选用其他年份相同实验条件下获取的玉米叶片光谱进行验证,确认NCSVI的稳定性和有效性。结果表明,11个子区间中只有绿峰、红边、近谷和近峰A这四个子区间对应的NCSVI与玉米叶片Cu2+含量相关性系数的绝对值高于0.9,分别为-0.94,-0.97,-0.94和-0.96,均方根误差均低于15,分别为12.57,8.71,12.71和10.06,而WBI,MCARI和NDWI的相关性系数最高的仅达到0.75,均方根误差最小的为24.21,说明四个子区间对应的NCSVI对玉米叶片铜污染有着更好的指示性。利用不同年份相同条件下的玉米实验对以上结果进行验证,发现11个子区间中,R绝对值大于0.9、RMSE小于1.55的只有绿峰、红边、近谷和近峰A这四个子区间,其中R分别为-0.9,-0.97,-0.97和-0.93,RMSE分别为1.50,0.85,0.78和1.29,均优于WBI,MCARI和NDWI,与2016年实验得出的敏感子区间一致,说明NCSVI能探测铜胁迫下玉米光谱的敏感区间,具备效率高、稳定性好的特点。所提出的NCSVI指数可作为监测玉米叶片铜污染的一种方法,并为其他农作物重金属污染研究提供一定的理论支持。  相似文献   

3.
光谱间微弱信息测度是当今高光谱遥感研究难点之一,传统光谱测度方法难以区分光谱信息的微弱差异。研究设计了不同浓度的铅(Pb)污染实验,并测量了不同浓度铅离子(Pb2+)胁迫下玉米叶片的高光谱反射率、叶绿素含量及Pb2+含量,但是从所测结果得出,不同浓度Pb2+胁迫下的光谱相似性相关系数均达到0.999,难以区分不同浓度Pb2+胁迫引发的光谱间微弱信息差异和污染程度。针对这一情况,基于光谱微分处理、正切函数增强、光谱角量度与波谱分段检测等,提出了一种新型的相似光谱测度方法,即微分光谱角正切(derivative spectral angle tangent,DSAT)法。为了验证DSAT在区分相关系数达0.99以上相似光谱的可行性和有效性,将DSAT用于不同浓度Pb2+胁迫玉米叶片的整体波形与光谱区间子波形的信息差异性度量与检测。实验结果得到,波形差异信息与玉米叶片中叶绿素相对浓度与Pb2+含量显著相关。进而也证明DSAT法在甄别较高相似性光谱间差异上具有更好的实用性和优越性。  相似文献   

4.
农作物在受到重金属污染以后,会破坏本身的组织细胞结构和叶绿素含量,从而影响农作物的新陈代谢和健康状况。人和动物如果食用了污染的农作物以后,会有致命的伤害。高光谱遥感目前被广泛应用于监测农作物受重金属污染的程度。重金属污染下的农作物叶片的光谱变化很微小,传统的监测方法和常规的光谱特征参数很难将光谱之间的微弱差异区别开,目前高光谱遥感应用是研究的重点和难点。通过设置不同浓度的Cu2+和Pb2+胁迫下玉米盆栽实验,采集玉米叶片的光谱数据、叶绿素的相对含量以及重金属Cu2+和Pb2+的相对含量。提出了包络线去除(CR)、光谱相关角(SCA)、光谱信息散度(SID)以及正切函数(Tan)和兰氏距离(LD)相结合的LD-CR-SIDSCAtan模型,将其与传统的光谱测度方法,如光谱相关系数(SCC)、光谱角(SA)、光谱角正切(DSA)、光谱信息散度-光谱相关角正切(SIDSAMtan)、光谱信息散度-光谱梯度角正切(SIDSGAtan)和常规的光谱特征参数,如红边最大值(MR)、绿峰高度(GH)、红边一阶微分包围面积(FAR)、红边一阶微分曲线陡峭度(FCDR)、蓝边(DB)、红谷吸收深度(RD)相比较,验证了该模型的优越性和可行性。并且将LD-CR-SIDSCAtan模型应用于不同浓度下Cu2+和Pb2+胁迫的玉米叶片的整体波形和子波段的光谱差异信息的测度上。结果表明,LD-CR-SIDSCAtan模型实现了重金属Cu2+和Pb2+污染的定性分析,能够测度光谱相关系数达到0.99以上的相似光谱之间的差异信息,波形差异信息与叶片测得的叶绿素相对含量和重金属Cu2+和Pb2+相对含量显著相关,也分别找到了重金属Cu2+和Pb2+胁迫下的光谱响应波段。在测度光谱数据的整个波段区间范围,模型值为负值时的光谱差异要比模型值为正值更加明显;在模型值为正值时,如果数值越大,光谱的差异性也越大。因此,随着重金属Cu2+和Pb2+浓度的增加,光谱的差异增大,意味着重金属Cu2+和Pb2+污染程度更为严重;玉米植株受到重金属Cu2+胁迫污染,在测度光谱数据的局部子波段区间范围时,“蓝边”、“红边”、“近谷”、“近峰B”处对重金属Cu2+胁迫污染响应特别的敏感,可以作为监测重金属Cu2+污染程度的有效波段;当玉米植株受到重金属Pb2+胁迫污染时,在“紫谷”、“蓝边”、“黄边”、“红谷”、“红边”、“近峰A” 处对重金属Pb2+胁迫污染响应特别的敏感,可以作为监测重金属Pb2+污染程度的有效波段。最后通过LD-CR-SIDSCAtan模型的应用结果与玉米叶片中Cu2+和Pb2+含量进行线性拟合分析,从而反演和预测了重金属Cu2+和Pb2+对玉米植株的污染程度。  相似文献   

5.
我国农田重金属污染形势不容乐观。土壤中的重金属被作物根系吸收后会影响作物正常的生长发育,降低农产品质量,进而通过食物链进入人体,危害人体健康。高光谱遥感为实时动态高效监测作物重金属污染提供了可能。设置不同浓度Cu2+胁迫梯度的玉米盆栽实验,并采集苗期、拔节期和穗期玉米老、中、新叶片光谱数据,测定不同生长时期叶片叶绿素含量、叶片Cu2+含量。基于所获取的光谱数据、叶绿素含量和叶片Cu2+含量,结合相关分析法、最佳指数法(OIF)和偏最小二乘法(PLS)构建OIF-PLS法提取含有Cu2+污染信息的特征波段。首先依据苗期、拔节期和穗期叶片叶绿素含量及穗期叶片Cu2+含量与相应叶片光谱的相关系数初步筛选特征波段;然后,从中选取三个波段计算最佳指数因子,并以该三个波段为自变量,对玉米叶片Cu2+含量进行偏最小二乘回归分析,计算均方根误差;最后根据最佳指数因子最大、均方根误差最小的原则选取最佳特征波段。基于OIF-PLS法所选取的特征波段构造植被指数OIFPLSI监测重金属铜污染,并与常规的红边归一化植被指数(NDVI 705)、改进红边比值植被指数(mSR 705)、红边植被胁迫指数(RVSI)和光化学指数(PRI)监测结果做比较,验证OIFPLSI的有效性和优越性。另外利用在相同的实验方法下获取的不同年份的数据对OIFPLSI进行检验,验证OIFPLSI的适用性和稳定性。实验结果表明,基于OIF-PLS法提取的特征波段(542,701和712 nm)比基于OIF法提取的特征波段(602,711和712 nm)能更好地反映Cu2+污染信息;植被指数OIFPLSI与叶片Cu2+含量显著正相关,相关性优于NDVI 705,mSR 705,RVSI和PRI;OIFPLSI与叶片叶绿素含量显著负相关,与土壤中Cu2+含量显著正相关;不同生长时期OIFPLSI与土壤中Cu2+含量的相关性高低依次为拔节期、穗期、苗期。基于不同年份数据验证结果表明,OIFPLSI与叶片Cu2+含量显著正相关,OIFPLSI具有较强的稳定性。基于OIF-PLS法所提取的特征波段构建的OIFPLSI能够较好地诊断分析玉米叶片铜污染水平,可为作物重金属污染监测提供一定的技术参考。  相似文献   

6.
近年来在工业化和城镇化快速发展的地区,由重金属污染导致的环境问题尤为突出,特别是农业重金属污染更为社会所关注,因此,探索快速便捷的重金属污染甄别与监测方法极为重要。高光谱遥感作为新兴的重金属污染监测技术已有了深入研究。提出了固有波长尺度分解(IWD)概念和方法,并结合Hankel矩阵和奇异值分解(SVD)等建立了植被重金属污染程度预测的IWD-Hankel-SVD模型,该模型分为单变量模型和多变量模型。单变量模型主要是通过重金属污染的植被光谱IWD处理来获取光谱信息固有旋转分量(PRC)以提取最佳PRC的有效特征波段;在对各特征波段所构建的Hankel矩阵进行奇异值分解(SVD)基础上,依据获得该模型的奇异熵实现重金属污染信息预测。多变量模型是以植物叶绿素浓度相对值、单变量模型奇异熵作为参数实现重金属污染的信息预测。根据不同重金属Cu2+胁迫梯度下玉米植株污染的叶片光谱和叶绿素浓度以及叶片中Cu2+含量测定的数据,首先对不同浓度Cu2+胁迫下玉米叶片光谱进行IWD分析,获得能够较好保留原始输入光谱信息的最佳PRC,并从中提取到有效特征波段553~680,681~780,1 266~1 429,1 430~1 631,1 836~1 913和1 914~2 111 nm;然后对每一个特征波段构造其Hankel矩阵并进行SVD处理,以求取单变量的IWD-Hankel-SVD模型奇异熵;最后通过各特征波段所对应模型奇异熵与玉米叶片中Cu2+含量的相关分析,得到依据1 266~1 429和1 836~1 913 nm特征波段计算出奇异熵与玉米叶片中Cu2+含量的决定系数R2均高达0.9左右,说明这两个特征波段用于IWD-Hankel-SVD模型的Cu污染程度预测更具优越性和解释能力。同时,再把玉米叶片中叶绿素浓度相对值、1 266~1 429和1 836~1 913 nm特征波段相应模型奇异熵作为参数,采用偏最小二乘回归分析,得出多变量IWD-Hankel-SVD模型的玉米叶片Cu污染程度预测能力更强,决定系数R2达到0.9476,证明了多变量模型更具有鲁棒性和稳健性。  相似文献   

7.
土壤中不同浓度Cu2+含量映射到土壤光谱上的信息量十分微弱,并且这些高光谱数据中也存在着难以避免的噪声,因而本研究的关键是如何在土壤光谱复杂的噪声环境中提取微弱Cu2+信息。经验模态分解算法(EMD)能够有效去除高光谱数据中的噪声,且EMD是Hilbert变换对“非线性非稳定”信号时频分析的前提,当引入Huang变换后,可利用Hilbert-Huang变换(HHT)模型时频分析高光谱数据以实现降噪处理与信息提取。通过时频的HHT分析不同浓度Cu2+污染下的土壤光谱,完成从原始光谱经EMD分解出各本征模态函数(IMF)分量的包络线、调制信号和频谱等曲线中挖掘土壤光谱的Cu2+污染信息。研究结果表明,相同浓度Cu2+污染时的土壤光谱HHT时频分析结果相同,不同浓度时则不同,所以也可依据IMF分量反演土壤Cu2+含量。因此,高光谱数据的HHT时频分析能为土壤光谱的信息挖掘、光谱诊断和Cu2+含量反演等提供一种新的方法和思路。  相似文献   

8.
利用高光谱遥感技术监测并识别农作物受重金属污染信息是当今热点,研究设置了不同浓度铜离子(Cu2+)、铅离子(Pb2+)胁迫梯度的玉米盆栽实验,并测取了玉米叶片的光谱及叶片中重金属离子与叶绿素含量。基于获取的光谱数据,将光谱划分为紫谷、蓝边、绿峰、红谷、红边和红肩六个光谱特征区间,通过光谱的一阶微分和二维多重信号分类(2D-MUSIC)算法构造空间谱,对各光谱特征区间进行变换分析。实验结果表明:蓝边、绿峰和红边阵列信号的空间谱在Cu2+胁迫下为双高峰,在Pb2+胁迫下为单高峰,以此能够快速、直观地区分玉米叶片所受重金属污染的Cu2+和Pb2+元素类别。红谷和红肩阵列信号空间谱的方位角谱峰值与玉米叶片中Cu2+含量的相关系数分别达到-0.954 5和-0.964 8,说明用于监测Cu2+污染程度时效果理想;紫谷阵列信号空间谱的方位角谱峰值与玉米叶片中Pb2+含量的相关系数达到-0.999 8,说明用于监测Pb2+污染程度时效果理想。同时通过与常规重金属污染监测方法绿峰高度(GH)、红边位置(REP)、红边最大值(MR)、红边一阶微分包围面积(FAR)的应用结果进行比较分析,空间谱法的应用结果与玉米叶片中重金属离子含量的相关性较高,从而验证了空间谱应用于玉米重金属污染信息监测具有更好的有效性和优越性。  相似文献   

9.
重金属铜胁迫下玉米的光谱特征及监测研究   总被引:1,自引:0,他引:1  
农作物重金属污染监测是当今高光谱遥感研究的重要内容之一,旨在设计一种新的窄带植被指数,以实现不同培育期的两种玉米品种的重金属铜胁迫监测。研究设计了不同浓度的铜污染实验,采用SVCHR-1024I型高性能地物光谱仪测量不同浓度铜离子(Cu2+)胁迫下玉米叶片的光谱反射率,并同步获取了玉米叶片中Cu2+含量数据。首先,对玉米叶片原始光谱数据进行一阶差分处理,并计算一阶差分反射率与叶片中Cu2+含量的相关系数(r),筛选对铜胁迫敏感的波段。计算结果显示,489~497,632和677 nm波长附近的一阶差分反射率与叶片中Cu2+含量显著相关,可将其视为敏感波段。其次,根据以上3个敏感波段,建立基于一阶差分反射率的铜胁迫植被指数(dVI)。对所有可能的dVIs和Cu2+含量进行一元回归分析,并采用决定系数(R2)和均方根误差(RMSE)对回归结果进行评估,以筛选最佳指数。最后,采用不同生长年份的玉米实验数据对敏感波段的稳定性及dVI的适用性进行了验证评估;同时,通过与归一化植被指数(NDVI)、红边叶绿素指数(CIred-edge)、红边位置(REP)、光化学反射指数(PRI)等常规重金属胁迫植被指数进行应用比较,证明dVI更具有优越性。结果表明:一阶差分处理后,在450~500,630~680和677 nm波长处的叶片反射率与Cu2+含量的相关系数明显增大。基于一阶差分反射率的特征波段具有稳定性,对于不同生长年份的玉米叶片数据,特征波段的波长位置不变。一元回归分析结果表明,结合497,632和677 nm波长的一阶差分反射率的指数与Cu2+含量具有显著的相关性,对于不同生长年份的2种玉米品种数据集,R2都高达0.75以上。另外,与常规植被指数比较结果表明,该研究所提出的dVI具有更好的鲁棒性及有效性,可为冠层尺度的重金属胁迫监测提供理论基础。  相似文献   

10.
受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型   总被引:3,自引:0,他引:3  
通过野外实验测试和室内样品化验,获得3个不同污染状况农田样地自然环境下玉米的高光谱反射率、叶片的叶绿素含量、叶片和土壤的重金属含量等数据。对高光谱数据的可见光波段(400~800 nm)进行导数光谱计算和连续统去除处理,得到吸收谷位置、吸收深度、绿峰位置、绿峰处归一化反射值、红边位置、红边处归一化反射率、红肩位置、吸收宽度、光谱不对称度等光谱特征参数。分析上述参数的物理含义并将其和玉米叶绿素含量变化进行相关分析,选择并确定与玉米污染胁迫叶绿素微小变化有一定关系的参数,作为输入因子,建立BP神经网络模型,逐步增强并提取农田污染胁迫状态下玉米叶绿素含量的微小变化信息。  相似文献   

11.
随着人类生活质量的提高,农产品重金属污染问题备受关注。农作物中的重金属元素会通过食物链侵害人体健康,而不同重金属元素对人体毒害差别较大,因此农作物中含有重金属元素的类别识别至关重要。传统重金属元素检测方法存在环节多、耗时长、成本高等缺点,但高光谱遥感技术具有信息使用量大,理化反演能力强,分析速度快,无损监测等优势,逐渐成为农作物重金属污染分析的重要手段之一。以不同CuSO4·5H2O和Pb(NO3)2浓度梯度土壤胁迫下典型农作物玉米生长的叶片光谱为研究对象,引入光谱包络线去除(CR)、光谱比值(SR)、分数阶微分(FOD)同时结合改进红边比值指数(MSR)构建铜铅元素识别指数(CLI);通过挑选与铜铅元素种类相关性最强的三个分数阶微分阶数的CLI值建立铜铅元素判别特征点(CLDFP);再利用欧式聚类(EC)将训练集样本分为铜污染与铅污染两类并结合圆心连线的垂直平分线(PB),建立基于EC-PB识别铜铅元素种类的二维坐标系下判别规则线(CLDRL)和三维坐标系下判别规则面(CLDRP),从而实现玉米叶...  相似文献   

12.
土壤是人类生存环境的重要载体,因此,土壤重金属污染问题一直备受关注。随着遥感技术的发展,高光谱遥感在土壤重金属研究中取得了大量的成果,但是,基本上是根据土壤中有机质、铁、粘土矿物等的光谱吸收特征和反演土壤中重金属含量,而不能够区分土壤重金属污染光谱之间的微弱差异。通过盆栽土壤不同浓度铜(Cu)、铅(Pb)污染实验得到不同浓度Cu和Pb污染下盆栽土壤光谱曲线、土壤含水率和有机质含量,提出了一种光谱二阶差分Gabor展开方法探测不同浓度Cu和Pb污染下土壤光谱曲线之间的微弱差异。以二阶差分为基础,首先将土壤光谱转换为稀疏光谱,然后结合土壤稀疏光谱与Gabor展开理论,在频率域中检测不同浓度土壤重金属污染光谱之间的微弱差异,因此,摆脱了单纯通过土壤光谱反射率信息反演土壤重金属含量的研究,而是对土壤重金属污染光谱信息进行时频分析,最终达到检测土壤重金属污染瞬时光谱存在的目的。结果表明:受Cu和Pb污染的盆栽土壤光谱二阶差分Gabor展开系数尺度及等高线分布有较大的差异,Cu污染的盆栽土壤光谱二阶差分Gabor展开系数尺度分布存在两个较高的峰值,且等高线在第1 800~3 600项之间稀疏分布,Pb污染的盆栽土壤光谱二阶差分Gabor展开系数尺度分布存在一个较高的峰值,且等高线在第3 200~3 600项之间密集分布;二阶差分Gabor展开法检测的土壤Cu和Pb污染结果与土壤Cu和Pb含量、土壤含水率、土壤有机质是密切相关的,由于土壤Cu和Pb含量、有机质含量、含水率的不同,土壤Cu和Pb污染二阶差分Gabor展开光谱尺度分布而不同。根据相关性分析结果,分别将土壤Cu和Pb污染划分为三组:Cu(50)~Cu(300),Cu(400)~Cu(800),Cu(1 000)以上;Pb(50)以下,Pb(100)~Pb(300),Pb(400)~Pb(1 200)。  相似文献   

13.
重金属污染农作物后可通过食物链进入人体从而严重危害身体健康。如何快速准确地监测农作物中重金属含量已成为当今生态与粮食安全等领域的重要研究内容。常规的生化监测方法存在操作繁琐、过程长、具有破坏性等缺点,而高光谱遥感具有光谱分辨率高、信息量大、生化反演能力强、方便快捷、对监测对象无损伤等优势,因此利用高光谱遥感技术监测农作物中重金属含量已成为遥感领域的热点研究之一。以不同浓度Pb(NO3)2溶液胁迫下盆栽玉米植株为研究对象,基于不同铅离子(Pb2+)胁迫梯度下玉米叶片的反射光谱及其中Pb2+含量的测定数据,结合奇异值分解(SVD)理论和自适应模糊神经网络推理系统(ANFIS)结构,建立了一种Pb2+含量预测的SVD-ANFIS模型。首先对各胁迫梯度下玉米的老叶(O)、中叶(M)、新叶(N)三种叶片的反射光谱数据进行SVD处理,获取原始光谱信息的奇异值;然后选择O,M和N叶片对应的奇异值来寻求ANFIS结构的最佳输入组合,最终选定O-M(双输入)组合作为ANFIS结构的输入量,通过训练和学习获得最优模糊规则库后,ANFIS结构的输出量即为叶片中Pb2+含量,从而实现了SVD-ANFIS模型的预测性能。研究结果表明,该模型的输出误差值较小,精度较高,在模糊训练过程中隶属函数选为钟型函数时预测效果最佳。利用多参数的反向传播(BP)神经网络预测模型对SVD-ANFIS模型的预测优越性进行验证时,得到BP模型和SVD-ANFIS模型的决定系数(R2)分别为0.977 6和0.988 7,均方根误差(RMSE)分别为2.455 9和0.601 3,可见SVD-ANFIS模型的拟合度更高,预测效果更好。同时选取不同年份的Pb污染玉米叶片等光谱数据对SVD-ANFIS模型进行可行性检验,其R2和RMSE分别为0.986 4和0.887 4,说明SVD-ANFIS模型能较好的用于玉米叶片中Pb2+含量预测且具有较高的鲁棒性,可作为预测玉米叶片中重金属含量的一种方法。  相似文献   

14.
利用原子发射光谱和高效液相色谱系统地分析研究了内蒙沙冬青(Ammopiptanthus mongolicus(Maxim.)Chengf.)和新疆沙冬青(A.nanus(M.Pop.)Chengf.)(韦思奇,1998)发芽前和发芽后赤霉素(GA3)、生长素(IAA)、脱落酸(ABA)3种内源激素的变化和不同浓度Pb2+胁迫对沙冬青内源激素的影响。研究发现:(1)发芽后比发芽前新疆沙冬青IAA含量降低率为77.80%,ABA含量降低率为98.90%;蒙古沙冬青IAA含量降低率为75.80%,ABA含量降低率为66.20%;2种沙冬青发芽前后GA3含量变化不大。(2)随Pb2+浓度的提高(20~1 500 mg.L-1),IAA含量降低十分显著,高浓度(大于1 000 mg.L-1)Pb2+胁迫对GA3含量才有影响,ABA含量没有规律性的变化;在Pb2+胁迫下,蒙古沙冬青中3种内源激素含量均高于新疆沙冬青。(3)沙冬青幼苗中Pb2+分布特征均为根>茎>叶。(4)高浓度Pb2+胁迫对沙冬青叶片细胞产生了不可逆的伤害。研究结果为进一步研究荒漠地区特有的常绿阔叶灌木沙冬青的生长特征和抗逆机制提供了可参考的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号