首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain asubstantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to spin-orbit dependent impurity scatterings.  相似文献   

2.
刘宋  颜玉珍  胡梁宾 《中国物理 B》2012,21(2):27201-027201
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.  相似文献   

3.
Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, short-ranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbandsare occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.  相似文献   

4.
成志  周斌 《中国物理 B》2014,(3):498-503
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.  相似文献   

5.
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.  相似文献   

6.
柴政  胡茂金  王瑞强  胡梁宾 《中国物理 B》2014,23(2):27201-027201
We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin-orbit coupling, and after taking the effect of k-cubic Dresselhaus spin-orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.  相似文献   

7.
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect, which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal). By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate, it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one). The theoretical results obtained are in good agreement with recent relevant experimental results.  相似文献   

8.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

9.
We investigate the competing effects of spin-orbit coupling and electron--electron interaction on a kagome lattice at 1/3 filling. We apply the cellular dynamical mean-field theory and its real-space extension combined with the continuous time quantum Monte Carlo method, and obtain a phase diagram including the effects of the interaction and the spin-orbit coupling at T = 0. 1t, where T is the temperature and t is the hopping energy. We find that without the spin-orbit coupling, the system is in a semi-metal phase stable against the electron--electron interaction. The presence of the spin-orbit coupling can induce a topological non-trivial gap and drive the system to a topological insulator, and as the interaction increases, a larger spin--orbit coupling is required to reach the topological insulating phase.  相似文献   

10.
Theoretical investigation of low-lying electronic states and B 3Σu-X3Σg- transition properties of selenium dimer using size-extensivity singly and doubly excitation multireference configuration interaction theory with nonrelativistic all-electron basis set and relativistic effective core potential plus its split valence basis set is presented in this paper. The spectroscopic constants of ten low-lying Λ-S bound states have been obtained and compared with experiments. Spin-orbit calculations for coupling between B3Σu- sates and repulsive 1Πu,5Πu states have been made to interpret the predissociation mechanisms of the B3Σu- state. The lifetimes of B3Σu-(ν=0~6) have been calculated with scalar relativistic effects included or excluded,respectively,and reasonably agree with experimental values.  相似文献   

11.
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.  相似文献   

12.
Motivated by recent experimental realization of synthetic spin–orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose–Einstein condensates with anisotropic Rashba spin–orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin–orbit coupling and rotational frequency.Moreover, the phase transitions between different ground state phases induced by the anisotropic spin–orbit coupling are obviously different from the isotropic one.  相似文献   

13.
常凯  杨文 《物理学进展》2011,28(3):236-262
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

14.
We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling (SOC) nanoribbon nonadiabatically connected to a normal conductor. Both the nanoribbon and conductor are described by a hard-wall confining potential. Using the scattering matrix approach within the effective free-electron approximation, we have calculated the out-of-plane spin accumulation in the nanoribbon. It is found that the spin accumulation shifts toward the two edges of nanoribbon with the increasing of propagation modes. Specifically, as the Rashba SOC strength increases the spin accumulation in the nanoribbon will be enhanced and this result may suggest us a simple method to control the spin accumulation of the system by Rashba SOC strength.  相似文献   

15.
The high level quantum chemistry ab inito multi-reference configuration interaction (MRCI) method with large V5Z basis set is used to calculate the spectroscopic properties of the 15 A-S electronic states (X1∑+, A I П, 1 △, 1 ∑, 3∑+, 3П, 3△, 3△ , 5∑+, 5П, 5△, 1П (II), ofAsO+ radical correlated to the dissociation limit As+(3pg) + O(3pg) and As+(IDg) + O(1Dg). In order to obtain better potential curves and more accurate spectroscopic properties, the Davidson modification is taken into account. With the potential energy curves (PECs) determined here, vibrational levels G(v) and inertial rotation constants Bu are computed for all the bound electronic states when the rotational quantum number J equals zero (J = 0). Except for the states X1∑+, A1П , it is the first time that the multi-reference configuration calculation has been used on the 13 A-S electronic states of the AsO+ radical. The potential energy curves of all the A-S electronic states are depicted according to the avoided crossing rule of the same symmetry. Spin-orbit coupling effect (SOC) is introduced into the states X1 ∑+, A1 П, 3П to consider its effects on the spectroscopic properties. Transition dipole moments (TDMs) from A1П 1, 3 П1 states to the ground state X1∑0+ are predicted as well.  相似文献   

16.
The spin Hall effect—the excitation of a spin flux by an electric current normal to it—is considered in a paramagnetic sample in disregard of the spin-orbit coupling in the classical Hall effect case, when the Pauli spin polarization is induced by the magnetic field H 0 normal to the electric current.  相似文献   

17.
The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that an electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction from impurity scattering vanishes and the effect is robust against disorder. The orbital Hall effect leads to accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.  相似文献   

18.
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.  相似文献   

19.
The Hall conductance of a two-dimensional electronic system with Rashba spin-orbit coupling in the presence of an external periodic potential of a superlattice and a perpendicular magnetic field has been calculated. The calculations were performed for an electron gas with parameters typical both of a system with weak spin-orbit coupling (AlGaAs/GaAs) and a system with relatively strong Rashba coupling (InGaAs/InAs).  相似文献   

20.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号