首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Born–Mayer potential has been employed to predict the phase transition pressure in four strontium monochalcogenides, namely, SrO, SrS, SrSe, and SrTe, which crystallize in the NaCl (B1) phase and with the application of pressure, transforms to the CsCl (B2) phase. The compression, bulk modulus and the first-order pressure derivative of bulk modulus have also been calculated and compared with the available experimental and other theoretical results. The calculated values of transition pressure and other elastic properties predict that the hardness and strength parameters depend on the crystal structure and have the different values for different structures.  相似文献   

2.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

3.
In the present paper we have pointed out the weaknesses of the approach by Aynyas et al [1] to study the structural phase transition and elastic properties of thorium pnictides. The calculated values of phase transition pressure and other elastic properties using the realistic and actual approach are also given and compared with the experimental and previous theoretical work.   相似文献   

4.
A pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure has been predicted in transition metal carbides, namely TiC, ZrC, NbC, HfC, and TaC by using an interionic potential theory with modified ionic charge (Zm ), which includes Coulomb screening effect due to d-electron. The phase transition pressure (PT ) relies on large volume discontinuity in pressure–volume relationship, and identifies the structural phase transition from B1 phase to B2 phase. The variation of second-order elastic constants with pressure follows a systematic trend identical to that observed in other compounds of NaCl-type structure. The Born criterion for stability is found to be valid in transition metal carbides.  相似文献   

5.
The structural and elastic properties of thorium chalcogenides at high pressure, have been investigated using a suitable inter-ionic potential. The calculated equation of state, phase transition pressures for B1-B2 transition and bulk moduli for ThX (X=S,Se,Te) compounds agree well with the experimental results. ThTe, which crystallizes in the CsCl structure, does not show any structural transition up to 48 GPa. The present analysis does not show any anomalous features in elastic properties arising from ‘f’ electrons.  相似文献   

6.
An experimental program has been started to study polymorphic phase transitions under pressure in organic solids using the Be gasketing technique developed by us. This allows us to obtain x-ray diffraction patterns of low symmetry organic solids with high resolution, employing CuK α radiation. The first organic solid studied is α-resorcinol. At 0.5 GPa, it transforms to its high temperature and denser modification, β-resorcinol. The transformation mechanism is discussed with the help of molecular packing calculations.  相似文献   

7.
A comprehensive first principles study of structural, elastic, electronic, and phonon properties of zirconium carbide (ZrC) is reported within the density functional theory scheme. The aim is to primarily focus on the vibrational properties of this transition metal carbide to understand the mechanism of phase transition. The ground state properties such as lattice constant, elastic constants, bulk modulus, shear modulus, electronic band structure, and phonon dispersion curves (PDC) of ZrC in rock-salt (RS) and high-pressure CsCl structures are determined. The pressure-dependent PDCs are also reported in NaCl phase. The phonon modes become softer and finally attain imaginary frequency with the increase of pressure. The lattice degree of freedom is used to explain the phase transition. Static calculations predict the RS to CsCl phase transition to occur at 308?GPa at 0?K. Dynamical calculations lower this pressure by about 40?GPa. The phonon density of states, electron–phonon interaction coefficient, and Eliashberg's function are also presented. The calculated electron–phonon coupling constant λ and superconducting transition temperature agree reasonably well with the available experimental data.  相似文献   

8.
刘本琼  谢雷  段晓溪  孙光爱  陈波  宋建明  刘耀光  汪小琳 《物理学报》2013,62(17):176104-176104
基于密度泛函理论, 分别计算了α, γ铀的晶格常数、平衡态体积、体弹模量及其导数等, 与实验和其他第一性原理计算结果符合较好; 并根据焓-压强曲线得到了两相的相变压强~111GPa. 通过体心立方结构理想拉伸强度的计算, 分析其在极端加载条件下的结构行为. 另外, 计算了小应变情况下U-Nb (6.25at.%) 的能量-应变关系, 发现对应于剪切模量c’的应变会使得该结构的能量降低, 揭示了该结构的力学不稳定性. 关键词: 铀 相变 理想强度 结构稳定性  相似文献   

9.
The charge transport behavior of strontium fluoride nanocrystals has been investigated by in situ impedance measurement up to 35 GPa.It was found that the parameters changed discontinuously at each phase transition.The charge carriers in SrF_2 nanocrystals include both F~-ions and electrons.In the Fm3 m phase,pressure makes the electronic transport easier,while makes it more difficult in the Pnma phase.The defects at grain boundaries dominate the electronic transport process.Pressure could make the charge-discharge processes in the Fm3 m phase much easier,but make it more difficult in the Pnma phase.  相似文献   

10.
用PBE形式下的广义梯度近似(GGA)赝势平面波方法研究了氮化铂的结构相变以及弹性性质,计算了氮化铂的氯化钠(B1)、氯化铯(B2)、闪锌矿(B3)、纤维矿(B4)等四种结构并应用高压下的焓与压强的关系,得出在常温常压下B4结构是最稳定的结构,这与Yu 等人得的结果一致,且 B4→B1及B1→B2的相变压强分别发生在36.7 GPa和 185.4 GPa,同时,研究了B4结构在高压的弹性性质,发现弹性常数、体模量、剪切模量、压缩波速、剪切波速以及德拜温度均随着压强的增大而单调增大  相似文献   

11.
用PBE形式下的广义梯度近似(GGA)赝势平面波方法研究了氮化铂的结构相变以及弹性性质,计算了氮化铂的氯化钠(B1)、氯化铯(B2)、闪锌矿(B3)、纤维矿(B4)等四种结构并应用高压下的焓与压强的关系,得出在常温常压下B4结构是最稳定的结构,这与Yu 等人得的结果一致,且 B4→B1及B1→B2的相变压强分别发生在36.7 GPa和 185.4 GPa,同时,研究了B4结构在高压的弹性性质,发现弹性常数、体模量、剪切模量、压缩波速、剪切波速以及德拜温度均随着压强的增大而单调增大  相似文献   

12.
李全军  刘冰冰 《中国物理 B》2016,25(7):76107-076107
Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.  相似文献   

13.
周平  王新强  周木  夏川茴  史玲娜  胡成华 《物理学报》2013,62(8):87104-087104
采用第一性原理研究了CdS的六方纤锌矿(WZ), 立方闪锌矿(ZB) 和岩盐矿(RS)相在高压条件下的相稳定性、 相变点、电子结构以及弹性性能.WZ相与RS 相可以在相应的压强范围内稳定存在, 而ZB相不能稳定存在.压强大于2.18 GPa时, WZ相向RS相发生金属化相变.WZ相中S原子电负性大于Cd, 且电负性差值小于1.7, CdS的WZ相为共价晶体.高压作用下, S原子半径被强烈压缩, 有效核电荷增加, 对层外电子吸引能力提高, 电负性急剧增大, 导致S与Cd的电负性差值大于1.7, CdS的RS相以离子晶体存在. WZ相的C44随压强增加呈下降趋势, 导致WZ相力学不稳定, 并向RS相转变.当压强大于2.18 GPa时, RS相C11, C12随压强增加而增大, 并且C44保持稳定, 说明RS相具有良好的高压稳定性与力学性能. 关键词: 第一性原理 相变 电子结构 弹性性质  相似文献   

14.
The charge transport behavior of strontium fluoride nanocrystals has been investigated by in situ impedance measurement up to 41?GPa. It was found that the parameters changed discontinuously at each phase transition. The charge carriers in SrF2 nanocrystals include both F? ions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge–discharge processes in the Fm3m and Pnma phases more difficult.  相似文献   

15.
We present a study of finite-size effects in a model exhibiting a first-order temperature-driven symmetry-breaking structural phase transition in theL × cylindrical geometry in theL limit. Exact studies demonstrate the applicability of our scaling ansatz even in the one-dimensional limit, making this model ideal for studying finite-size effects. The scaling ansatz, similar to the previously developed ansatz for field-driven transitions, demonstrates that latent heat is crucial in driving these transitions. This ansatz is supported by a 2×2 phenomenological transfer matrix based upon the symmetries of the system; this produces an analytic free energy which has the scaling form. Order parameter probability distributions show that the high- and low-temperature phases coexist only in a small finite-size-affected regime near the bulk transition temperature; this regime vanishes exponentially fast asL diverges.  相似文献   

16.
B. Lorenz  B. Greuling 《高压研究》2013,33(1-6):327-329
Abstract

The cubic to orthorhombic transition in PbSe is investigated by electrical resistivity measurements up to 7 GPa and for temperatures between 20 °C and 300 °C. The phase diagram is constructed and the kinetics of the transition is discussed.  相似文献   

17.
For a specific three-dimensional vertex model, it is proven that it will show a first-order phase transition. The critical temperature is given in terms of the energy of some local vertex configurations. The approach used is similar to the Nagle approach. Some classes of compounds are considered which may be related to this model.  相似文献   

18.
The structural properties, electronic band structure and Bader charge of Sb2Te3 under hydrostatic pressure were simulated using density functional theory in order to study isostructural phase transitions (IPT) in Sb2Te3. The theoretical results showed that the axial ratio c /a did not exhibit any anomaly below 6 GPa. The variations of bond lengths were discontinuous at 2.5 GPa, which suggested considerable changes in interatomic interactions and provided sound support to the IPT. The effective charges of Sb and Te atoms showed significant discontinuous variations at 2.5 GPa, which revealed a strong redistribution of the electronic charge density and considerably changed interactions among bonding atoms. Thus, the IPT is originated from the considerable variation in the electronic charge density. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
张伟  漆安慎 《中国物理》2004,13(7):1171-1176
The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.  相似文献   

20.
An effective interionic interaction potential is developed to discuss the pressure induced structural phase transformation and mechanical properties of InX (X = N, P, As) semiconducting compounds. The effective interionic potential consists of the long-range Coulomb and three-body interactions and the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbour ions and the van der Waals interaction. The present calculations have revealed reasonably good agreement with the available experimental data on the phase transition pressures (Pt = 11.5, 10, 7.5 GPa) and the elastic properties of InX (X = N, P, As). The equation of state curves (plotted between V (P)/V(0) and pressure) for both the structures zincblende (B3) and rocksalt (B1) structures obtained by us are in fairly good agreement with the experimental results. The calculated values of the volume collapses [ΔV(P)/V(0)] are also closer to their observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号