首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
酿酒葡萄一般批量采收,采收期对其品质有较大影响.传统方法主要依靠对样本的酚、糖等各组分含量进行实验室理化指标检测,判定采收成熟度.如果对多个地块进行采摘前的连续监测,则批量大、成本高、采样与分析工作量繁重,且时效性差,难以保证果品的收获品质.以蛇龙珠品种为对象,提出一种利用近地面多光谱图像对种植区葡萄成熟度和批量采收期...  相似文献   

2.
基于多光谱图像的烟雾检测   总被引:2,自引:0,他引:2  
烟雾检测对于火灾早期防范非常重要,传统的智能视频和图像处理技术易受背景运动信息影响,抗干扰性差,且不容易区分森林水雾和燃烧产生的烟雾,森林防火误报率高。为此提出一种新的多光谱图像检测方法检测烟雾。采用多光谱成像系统,获取400至720 nm波段范围的烟雾、水雾光谱图像序列,对图像进行分层像素整合处理;利用欧氏距离度量不同分块光谱特征差异,获取动态区域光谱特征向量,根据目标与背景间光谱特征向量差异,提取烟雾、水雾区域。室内外试验结果表明:多光谱图像检测方法可用于烟雾检测,能够有效地检测并区分烟雾和水雾,与视频图像方法结合,可有效地用于森林火灾监测,降低森林火灾检测误报率。  相似文献   

3.
为探究多特征融合方法在作物倒伏领域快速精准识别中的适用性,利用无人机获取多田块冠层尺度的不同倒伏率麦田多光谱数据,对原始倒伏图像进行图像拼接、辐射校正、几何校正等预处理,并利用重归一化差值植被指数和阴影指数分别剔除土壤和阴影背景,提取小麦倒伏DSM模型和植被指数分别与多光谱图像进行多特征图像主成分变换融合,筛选差异性较大的纹理特征,采用支持向量机(SVM)、人工神经网络(ANN)和最大似然法(MLC)监督分类模型对多光谱和DSM融合图像、多光谱和归一化植被指数(NDVI)融合图像、多光谱图像和纹理特征图像进行监督分类,并采用总体精度(OA)、 Kappa系数和提取误差综合评价各监督模型的分类性能和倒伏提取精度。分类结果表明:各监督分类方法在不同倒伏区域提取结果建模效果趋势一致,SVM和ANN整体提取精度高于MLC,在高倒伏区域,多光谱与NDVI融合图像的SVM监督模型(OA:92.63%, Kappa系数:0.85,提取误差:1.11%)提取效果最好;在中倒伏区域,多光谱与DSM融合图像的SVM监督模型(OA:90.35%, Kappa系数:0.79,提取误差:9.34%)提取效果最好...  相似文献   

4.
土壤水分是影响农业生产的重要因素,在作物生长发育和最终产量上起着至关重要的作用,快速、高效地估算土壤水分已成为农林水资源监测的热点问题。利用高光谱反射率的特征波段计算植被指数、构建土壤水分反演模型已获得广泛的认可和应用。针对反演土壤水分受植被覆盖度影响较大的问题,提出用多种植被指数组合削弱植被覆盖度对土壤水分反演的影响。在宜昌市仓屋榜试验基地选取30组柑橘树,在果树滴落线处收集土壤,通过烘干法测定土壤质量含水率,采样4次,共计120组土壤含水率;并利用ASD Field Spectral FR光谱仪(波长范围325~1 075 nm)及大疆精灵4多光谱版无人机获取了120组试验区蓝、绿、红、红边、近红外及短波红外波段光谱反射率,采用移动平均法对光谱数据进行降噪预处理,通过灰色关联法对9种植被指数进行比较分析,筛选出与土壤水分极显著相关的4种植被指数(p<0.01),各指数与土壤水分的相关性从高到低依次为裸土指数(BSI)、归一化蓝绿差异植被指数(NGBDI)、绿色归一化指数(GNDVI)、归一化差异植被指数(NDVI),其中BSI与土壤水分的相关性最高,相关系数为-0.687(N...  相似文献   

5.
基于滤光片阵列分光的无人机载多光谱相机研制   总被引:1,自引:0,他引:1  
介绍一款适用于轻小型无人机的多光谱相机。将多个独立的滤光片依次拼接成滤光片阵列在成像探测器前放置由多个滤光片依次排列而成的滤光片阵列,一次曝光得到地物目标分条带区域的分波段图像,通过飞行平台的前向运动获得每个条带区域的多光谱图像。利用平台的前向运动代替了旋转、扫描等机械运动,减轻了相机重量和体积,适用于轻小型无人机平台,由于采用较大的探测器件,能够获得更多的旁向像素数(约4300)和更宽的旁向幅宽。利用研制的多光谱相机,在中国科学院怀来遥感站进行了无人机飞行试验,获取了站区周边的6波段多光谱图像。数据处理结果表明该相机的数据质量能够满足植被指数计算等相关要求。  相似文献   

6.
为了满足生鲜肉品质参数无损检测领域,对轻便式、低成本设备的开发需求,提出一种基于多光谱漫反射技术的生鲜肉品质检测方法。首先根据漫反射近似理论,结合牛肉样品散射系数、吸收系数及折射率等参数,在无线细垂直光束的蒙特卡洛仿真的基础上,对具有一定发散角度LED光源进行了初始化的校正,分别从光源照射位置概率分布、不同角度的照射概率分布、仰角、方向角的概率分布、不同角度光线入射样品时反射引起能量损失及对光子权重的影响,得到在LED光源发散角情况下,不同源探距下的漫反射率与检测深度,确定了光源与检测器之间的最佳距离为15 mm,然后根据此距离,搭建了多光谱漫反射检测平台,检测平台由8组中心波长为470,535,575,610,650,720,780和960 nm的LED光源组成,与所要检测的生鲜牛肉品质参数相对应。同时利用LED光源的发散角,确定了光源到样品表面的垂直距离与每个光源的安装位置,保证光源照射到样品的区域是均匀的。样品的漫射光强经由信号采集与放大电路的处理后传至上位机,并在上位机完成建模与分析。最后为验证该检测系统的性能,以生鲜牛肉新鲜度参数中的颜色(L*,a*,b*)与pH值为指标,利用60个样品进行了试验,分别得到8个光源下的原始光强值与校正后的反射率值,然后将牛肉样品按照3∶1比例分为校正集与预测集,针对原始光强值与反射率值,分别利用多元线性回归(multiple linear regression, MLR),偏最小二乘回归(partial least squares regression, PLSR)与偏最小二乘支持向量机回归(partial least-squares support vector machine, LS-SVM)三种方法,建立各个参数在原始光强与反射率数据两种情况下的预测模型,并得到最佳模型结果。结果表明,利用反射率数据建模结果均好于光强数据结果,其中参数L*,a*,b*的MLR建模结果优于PLSR与LS-SVR,其预测集相关系数分别为0.983 2,0.907 2及0.935 9,预测集误差分别为1.00,2.14及0.67。参数pH值的LS-SVR建模结果优于PLSR与MLR,其预测集相关系数为0.942 0,误差为0.19。最后利用未参与试验的20块牛肉样品对模型进行了验证,颜色L*,a*,b*及pH参数的预测值与实测值的相关系数均大于0.85,结果证明,利用多光谱漫反射技术以及所搭建的多光谱漫反射检测系统对生鲜牛肉品质参数检测是可行的,该方法能够为设计便携式或微型化生鲜牛肉品质的无损检测仪器提供参考与依据。  相似文献   

7.
鲁洋  徐海松 《光学学报》2022,(7):282-290
由于场景的光谱信息受到不同照明条件的影响,故在照明不可控场景下拍摄的多光谱图像的光谱反射比重构需要进行照明光谱估计。因此,提出了一种基于单幅多光谱图像的通用方法来准确预测场景的照明光谱。首先,通过分析每个像素的响应特性设计并计算色度权重图,以寻找包含更多照明信息的像素。然后,对加权后的图像进行成分分析,以在通道域中提取光源响应特征。最后,得益于创新性引入的基于照明光谱库训练的字典学习方法,可估计出场景光源的相对光谱功率分布。所提方法在模拟数据和真实数据上的照明光谱估计平均角度误差分别为0.29和3.42,与现有的同类方法相比,表现出更优的准确性和鲁棒性。  相似文献   

8.
氮素是影响冬小麦生长的重要元素,如何根据冬小麦需求适时变量施用氮肥是现代农业精准施肥研究需要解决的关键问题之一。无人机遥感技术在冬小麦生长情况监测中具有高分辨率、高时效性、低成本等优势,为解决施肥需求监测问题提供了重要数据源。因此研究无人机多光谱影像数据,构建其与冬小麦产量与施肥量之间的关系模型对于精准施肥研究十分重要。选择冬小麦典型生产区山东省桓台县为实验区,布置4种不同施氮水平的田间实验。利用无人机搭载Sequoia多光谱传感器,采集实验区不同氮素施肥水平的冬小麦返青初期多光谱影像,同时测得冬小麦冠层叶绿素含量(soil and plant analyzer development,SPAD)数据及产量数据。通过多光谱影像数据计算获得归一化植被指数(normalized difference vegetation index,NDVI)、叶绿素吸收指数(modified chlorophyll absorption ratio index,MCARI2)等6种形式植被指数,建立无人机多光谱影像植被指数与小麦冠层SPAD值的线性、二阶多项式、对数、指数和幂函数模型,优选地面氮素状况最优植被指数模型,反演冬小麦不同施氮水平的状况,进而根据不同施氮水平与敏感植被指数和冬小麦产量的关系,构建了基于植被指数指标的氮肥变量施肥模型,并将模型应用于同时期小麦多光谱影像。结果如下:(1)地面实测的SPAD值能较好的反映冬小麦施氮水平及生长状况。无人机多光谱数据分区统计结果表明不同施氮水平冬小麦冠层反射率有较大差异性。(2)结构性植被指数与SPAD拟合效果优于其他类型指数。MCARI2的二阶多项式模型精度最优(R2=0.790,RMSE=0.22),其能较好的移除冬小麦返青初期土壤背景等因素的影响,为氮肥敏感植被指数。(3)基于产量-施氮量模型和产量-敏感植被指数模型,构建敏感植被指数的氮肥变量施肥模型为Nr=10 707.63×MCARI22-5 992.36×MCARI2+715.27。通过模型应用生成了实验区冬小麦氮肥变量施肥图,与实际情况具有较高一致性。该研究提出了利用无人机多光谱数据进行冬小麦施氮决策的模型及方法,为冬小麦精准施肥的进一步研究提供了依据。  相似文献   

9.
基于实测端元光谱的多光谱图像光谱模拟研究   总被引:2,自引:0,他引:2  
地物光谱特性是遥感应用的基础。然而,在基于野外实测端元光谱的遥感应用中,由于测量尺度不同,导致同一地物光谱形态和反射率值存在很大差异,为遥感信息的定量反演带来困难。文章以新疆塔里木盆地北缘渭干河-库车河绿洲为研究区,选取裸土、植被两类地物作为研究对象,首先通过AVNIR-2传感器的光谱响应函数,实现了将野外实测端元光谱拟合为多光谱离散光谱,通过实例数据表明,拟和的多光谱与AVNIR-2像元光谱具有很好的相关性,在此基础上,采用线性算法建立端元光谱与遥感图像像元光谱的转换模型,实现了从实测端元光谱尺度向遥感多光谱像元尺度的定量光谱转换,为遥感定量分析奠定了一定基础。  相似文献   

10.
为了对水中的有机污染物进行绿色、快速、准确的检测,提出了一种基于荧光多光谱融合的水质化学需氧量(Chemical Oxygen Demand, COD)的检测方法。实验样本为包含近岸海水和地表水在内的实际水样53份,采用标准化学方法获取样本的化学需氧量的理化值,利用荧光分光光度计采集样本的三维荧光光谱并对光谱数据进行处理和建模。在200~300 nm(间隔5 nm)的激发波长范围内将三维光谱展开成二维的发射光谱(发射波长范围250~500 nm,间隔2 nm)。采用ACO-iPLS(蚁群-区间偏最小二乘)算法提取发射光谱特征,PSO-LSSVM(粒子群优化的最小二乘支持向量机)算法建立预测模型,分别建立了单激发波长下的荧光发射光谱数据预测模型、多激发波长下发射光谱的数据级融合(LLDF)预测模型以及多激发波长下发射光谱的特征级融合(MLDF)预测模型,通过对预测效果的对比,得出结论。实验结果表明,对于不同激发波长下荧光发射光谱数据而言,265 nm激发光作用下的发射谱数据的预测模型最优,其检验集决定系数R2P和外部检验均方根误差RMSEP分别为0.990 1和1.198 6 mg·L-1;对于荧光多光谱数据级融合模型(简写为:LLDF-PSO-LSSVM)而言,在235,265和290 nm激发光作用下的发射光谱的LLDF模型效果最优,其检验集的R2和RMSEP分别为0.992 2和1.055 1 mg·L-1;对于荧光多光谱特征级融合模型(MLDF-PSO-LSSVM)而言,在265,290和305 nm激发光作用下的荧光发射光谱的MLDF模型效果最优,其R2p=0.998 2,RMSEP=0.534 2 mg·L-1。综合比较各类建模结果可知,MLDF-PSO-LSSVM的模型效果最优,说明基于荧光发射光谱数据,采用多光谱特征级融合模型检测水质COD时,检测的精度更高,预测效果更好。  相似文献   

11.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究   总被引:6,自引:0,他引:6  
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。  相似文献   

12.
利用光谱数据快速检测土壤含水量的方法研究   总被引:9,自引:1,他引:9  
应用美国ASD公司的FieldSpec HandHeld型可见/近红外光谱仪获得了52份不同含水量土壤的可见/近红外漫反射光谱数据,并通过实验测定了各土壤样本的含水量值,运用相关系数法寻找出了光谱对于土壤水分的敏感波段,然后利用单一敏感波段处的光谱数据建立了一元回归模型, 并检测了土壤含水量。实验结果表明, 该模型对土壤水分的检测效果比较好,模型的预测相关系数r为0.966 5,预测均方根误差RMSEP为0.012 1,为快速、准确检测土壤含水量提供了一条新的途径。  相似文献   

13.
近红外光谱的北方寒地土壤含水率预测模型研究   总被引:1,自引:0,他引:1  
我国北方寒地温差大,土壤温差对近红外光谱测量土壤墒情有较大影响。针对这一问题,以北方寒地土壤为研究对象,探究大范围温度胁迫下(-20~40 ℃)土壤的近红外光谱与土壤不同含水率之间的关系预测模型方法。选取黑龙江八一农垦大学农学院试验基地中的黑土,经烘干、过筛等操作处理后配置含水率范围在15%~50%内八种不同湿度的土壤样品,建立北方寒地土壤大范围温度胁迫下土壤的近红外光谱信息与含水率之间的定量预测模型。在全波段光谱数据的基础上,结合五种不同光谱信号预处理方法,采用BP神经网络算法、优化支持向量机算法(SVM)、高斯过程算法(GP)三种智能算法建立北方寒地土壤近红外光谱与含水率的预测模型并验证模型的效果。利用69组数据进行训练建模, BP神经网络相关参数设置为学习速率0.05,最大训练次数设置为5 000,隐层单元数确定为20;SVM采用径向基函数,并利用leave-one-out cross validation确定了最佳惩罚参数为0.87,使模型预测的准确性提高;高斯过程算法内部采用马顿核。模型的定量评估采用决定系数(R2)和均方根误差(RMSE)。结果表明,在建立的全部BP神经网络模型中,效果最佳的为S_G-BP神经网络模型,模型的R2为0.960 9,RMSE为2.379 7;在SVM模型中SNV-SVM模型的效果最好,模型的R2为0.991 1,RMSE为1.081 5;在GP模型中S_G-GP模型的效果最好,模型的R2为0.928,RMSE为3.258 1,综上基于SNV预处理的SVM模型训练效果最优。利用剩余的35组光谱数据作为预测集验证模型性能,经模型对比分析发现基于SVM算法的预测模型效果优于其他两种算法,其中基于S_G的SVM模型效果最优,其预测模型的R2和差RMSE分别为0.992 1和0.736 9。综合建模集与预测集的参数最终确定基于S_G的SVM模型为最佳模型。此模型可以作为大范围温度胁迫条件下(寒地)的土壤含水率有效预测方法,为设计优化适宜寒地便携式近红外土壤含水率快速测量仪提供科学依据。  相似文献   

14.
近红外光谱分析技术在土壤含水率预测方面具有独特的优势,是一种便捷且有效的方法。卷积神经网络作为高性能的深度学习模型,能够从复杂光谱数据中自主提取有效特征结构进行学习,与传统的浅层学习模型相比具有更强的模型表达能力。将卷积神经网络用于近红外光谱预测土壤含水率,并提出了有效的卷积神经网络光谱回归建模方法,简化了光谱数据的预处理要求,且具有更高的光谱预测精度。首先对不同含水率下土壤样品的光谱反射率数据进行简单的预处理,通过主成分分析减少光谱数据量,并将处理后的光谱数据变换为二维光谱信息矩阵,以适应卷积神经网络特殊的学习结构。然后基于卷积神经网络算法,设置双层卷积和池化结构逐层提取光谱数据的内部特征信息,并采用局部连接和权值共享减少网络参数、提高泛化性能。通过试验优化网络结构和各项参数,最终获得针对土壤光谱数据的卷积神经网络土壤含水率预测模型,并与传统的BP,PLSR和LSSVM模型进行对比实验。结果表明在训练样本达到一定数量时,卷积神经网络的预测精度和回归拟合度均高于三种传统模型。在少量训练样本参与建模的情况下,模型预测表现高于BP神经网络,但略低于PLSR和LSSVM模型。随着参与训练样本量的增加,卷积神经网络的预测精度和回归拟合度也随之稳定提升,达到并显著优于传统模型水平。因此,卷积神经网络能够利用近红外光谱数据对土壤含水率做出有效预测,且在较多样本参与建模时取得更好效果。  相似文献   

15.
无人机加载红外光谱载荷对区域内影像进行获取现已成为遥感领域一种重要的技术手段,可通过对携带位置信息的影像进行分类提取,得到植被盖度、温度指数等一系列因子指标。利用FREE BIRD(自由鸟)小型低空无人机系统挂载Tetracam红外相机(310万像素)对新疆玛纳斯县一河道进行影像获取。无人机飞行面积约为20.5 km2,为了得到更加精确的植被、温度等因子,需要对无人机红外影像进行配准,通过优化SIFT匹配参数和RANSAC粗差剔除后,获取了可靠的匹配结果,即经过算法匹配后的影像与原影像进行了误差比对,能够满足后期的应用需要, 这也是本文的创新点之一。将影像进行配准后进行二维影像拼接,将多张红外影像按照航向重叠度不低于60%,旁向重叠度不低于50%的概率进行拼接,得到拼接后的红外影像图。另外比较了SIFT和SUFT两种算法,利用优化的SIFT算法及改进的FLIR传感器获取1 600张热红外影像,利用地面同步测量数据对拼接后的红外影像进行算法匹配,并利用ENVI(完整的遥感图像处理平台)软件进行温度及植被盖度的影像反演,得到了研究区域的单一影像及红外影像的温度反演图及植被反演图。通过对两种算法的对比得到更加优化的算法模型,并对该模型进行回归分析和精度检验,得到该模型的相关系数R2为0.767,匹配精度为81.51%,模型精度较高。本模型的建立对日后无人机红外影像的配准及提取反演奠定了理论和实践基础。  相似文献   

16.
土壤光谱重建的湿地土壤有机质含量多光谱反演   总被引:4,自引:0,他引:4  
土壤有机质是湿地生态系统的重要元素,利用多光谱遥感技术可大尺度、快速获取其含量信息,对保护湿地生态系统具有重要意义。然而,由于不同地物光谱混合给多光谱数据带来光谱畸变,影响湿地土壤有机质含量的反演精度。为了消除不同地物光谱混合,实现湿地土壤有机质含量的准确、实时监测,以闽江鳝鱼滩湿地为研究区,利用线性波谱分解技术对原始影像的像元进行分解,重建土壤光谱,分析原始光谱、重建光谱与土壤有机质含量的相关性后,建立土壤有机质含量的反演模型。结果表明:利用线性波谱分解技术可有效消除原始影像中的植被端元,减少大部分道路及建筑物的反射干扰,重建后的土壤光谱特征曲线更趋近于自然状态下土壤的光谱曲线,重建效果显著;通过两种光谱与土壤有机质含量的相关系数对比,重建光谱更能准确的反映土壤光谱与土壤有机质含量的相关性;运用重建光谱构建土壤有机质含量的反演模型,其预测精度优于基于原始光谱的反演模型,R2F分别提高0.124和2.223,RMSE则降低0.106,1∶1线检验的预测值与实测值的拟合度更高,模型可行且有效。由此得出结论,利用线性波谱分解技术消除不同地物光谱混合,重建土壤光谱,一定程度上可实现在自然条件下湿地土壤有机质含量的大面积、准确检测,具有较好的实际应用价值。  相似文献   

17.
海洋沉积物中碳的变化是衔接海洋生态系统的过去与未来的信息桥梁,揭示了海洋生态过程变化规律.因此开展海洋沉积物碳含量的研究,对掌握海洋生态系统碳循环规律,研究全球碳循环,研究对气候变化的响应和反馈有着重要的作用.光谱技术是一种快速、无损的测量方法,在定量分析中已有很成熟的应用.多光谱融合通过将多个光谱数据结合一起,获得比...  相似文献   

18.
水是植物正常生长发育必不可缺的元素之一,能够快速检测并获取植物叶片水分,对田间作物灌溉生产管理和作物的生理需水特性研究等具有重要的意义。利用RedEdge-M型号多光谱相机,以不同生育期的55组玉米叶片作为试验对象,在光线充足且无阴影遮挡的环境下对试验玉米叶片样本进行拍摄,拍摄过程中通过直连下行光传感器来消除太阳高度角对光谱反射的影响,每组玉米叶片样本经过拍摄可得到蓝、绿、红、近红外和红边等5个波段的TIFF图像。借助图像处理软件ENVI5.3构建玉米叶片样本兴趣区域(ROI),以ROI范围内玉米叶片样本的平均反射光谱作为该样本的反射光谱来减小镜头边缘减光现象带来的误差。参照标准白板出厂时提供的专属标定反射率、白板ROI范围内的平均反射光谱和玉米叶片样本白板ROI范围内的平均反射光谱,比值换算得到各组玉米叶片5个波段处的光谱反射率。同时利用YLS-D型号植物营养测定仪,采用五点取样法选择玉米叶片的5个区域测取玉米叶片样本的水厚度平均值作为叶片含水量的测量指标。随机选取43组玉米叶片样本得出的光谱反射率作为训练样本,采用BP神经网络建立基于多光谱图像的玉米叶片含水量反演模型,并融合莱文贝格-马夸特理论(Levenberg-Marquardt,L-M)进行经典神经网络现有缺点的改进。输入神经元数目为5个,即蓝、绿、红、近红外和红边等5个波段图像对应的反射率,输出神经元为1个,即玉米叶片含水量。剩余12组玉米叶片作为验证样本用于模型反演数据的相关性分析,结果表明,利用多光谱图像光谱信息并结合基于Levenberg-Marquardt方法改进后BP神经网络玉米叶片含水量反演模型,模型反演的拟合相关系数能达到0.896 37, 12组验证集中玉米叶片含水量参考值和反演值的相关系数r达到0.894 8,反演结果比较理想。可以实现对玉米叶片含水量的快速准确检测,对精准农业的推广和应用提供了方法和参考依据。  相似文献   

19.
无人机载小型多光谱成像仪的设计   总被引:6,自引:0,他引:6  
多光谱成像仪足一种有效的对地观测工具,航空机载多光谱成像仪在遥感领域得到广泛的应用。介绍一种新的小型多光谱成像仪的设计,以小型化、轻量化研究为特点,使其与小型无人飞机精密结合,成为一种灵活机动的海洋监测工具,将在海洋污染、赤潮发现、原油泄漏等重大事件临测上发挥作用。  相似文献   

20.
为解决大豆冠层在近地端的多光谱图像边缘灰度不均,目标与背景之间灰度差别小,难以准确高效地获取大豆冠层目标区域的难题,将多光谱成像处理技术与经典图像分割方法有机融合,提出基于多光谱图像处理技术的大豆冠层提取方法。以东北大豆为对象,通过Sequoia多光谱相机采集绿光、近红外、红光、红边和可见光五类大豆多光谱图像,采用高斯平滑滤波法对原始大豆多光谱图像进行预处理,分析多光谱图像中大豆冠层和背景的灰度直方图分布特性,在此基础上利用迭代法、Otsu法和局部阈值法提取原大豆多光谱图像中冠层区域,并以图像形态学开运算处理细化和扩张背景,避免图像区域内干扰噪声对大豆冠层识别效果的影响,同时以有效分割率、过分割率、欠分割率、信息熵以及运行时间等为监督指标,对大豆冠层多光谱图像识别模型进行效果评价。大豆冠层识别模型中迭代法可以有效分割近红外和可见光大豆冠层图像,有效分割率分别为97.81%和87.99%,对绿光、红光和红边大豆冠层图像分割效果较差,有效分割率低于70%;Otsu法和局部阈值法可以有效分割除红光波段的其余四种多光谱大豆冠层图像,且有效分割率均在82%以上;三种算法对红光大豆冠层图像的有效分割率均低于20%,未达到较好效果。在原始多光谱图像中应用迭代法、Otsu法和局部阈值法提取大豆冠层图像与标准图像的信息熵平均值波动幅度分别为:0.120 1,0.054 7和0.059 8,其中Otsu法和局部阈值法较小,表明了对于大豆冠层多光谱图像识别中两种算法的有效性。该算法中Otsu法和局部阈值法均可以有效提取绿光、近红外、红边和可见光等多光谱的大豆冠层图像,二者较为完整地保留了大豆冠层信息,其中Otsu法实时性能较局部阈值法更好。该成果为提取农作物冠层多光谱图像提供理论依据和技术借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号